Driving factors of water resources-economic society-ecological environment coupling in Gansu Province
-
摘要: 揭示水资源-经济社会-生态环境耦合协调的主要影响因素,对加强自然资源与经济社会系统宏观管理、推动区域可持续发展具有重要意义。基于内源动力和外向动力两个维度选取要素,在区域水资源-经济社会-生态环境耦合协调演变分析的基础上,引入固定效应模型测度2010—2019年甘肃省水资源-经济社会-生态环境耦合协调的驱动因素。结果表明:(1)经济发展水平、科技水平对甘肃省水资源-经济社会-生态环境耦合协调水平的提升具有正向作用,回归系数分别为0.029和0.021,且通过了1%的显著性检验;(2)分区影响因素差异显著,环境保护水平和经济发展水平的提高对各分区耦合协调度的提高具有促进作用。据此,在加快甘肃省经济社会发展的背景下,应协同相关政策及驱动因素的激励措施,推动水资源-经济社会-生态环境系统耦合演进。Abstract: Revealing the main influencing factors of coupled water resources-economic society-ecological environment coordination is important for strengthening the macro management of natural resources and economic society systems as well as promoting regional sustainable development. With the selection of indicators based on two dimensions of endogenous and outward dynamics, this study introduces a fixed-effects model to measure the coupled water resources-economic society-ecological environment coordination drivers in Gansu Province from 2010 to 2019 by analyzing the evolution of regional water resources-economic society-ecological environment coupling. The results show that: ① The level of economic development and technological development have a positive effect on the improvement of the level of coupled water resources-economic society-ecological environment coordination in Gansu Province, with regression coefficients of 0.029 and 0.021 respectively, and passing the 1% significance test. ② The factors influencing the zoning areas differ significantly, the improvement of the level of environmental protection and economic development has a catalytic effect on the improvement of the coupling coordination of the sub-regions. In the context of accelerating economic society development in Gansu Province, policies and incentives of relevant drivers should be coordinated to promote the coupled evolution of water resources-economic society-ecological environment system.
-
表 1 相关系数及VIF检验
Table 1. Correlation coefficient and VIF test
变量 X1 X2 X3 X4 X5 X6 X7 X1 1 X2 0.620*** 1 X3 0.368*** −0.092 1 X4 −0.656*** −0.616*** −0.451*** 1 X5 −0.013 −0.032 0.193** −0.198** 1 X6 −0.207** −0.283*** 0.456*** −0.184** 0.222*** 1 X7 −0.607*** −0.470*** −0.230*** 0.599*** −0.557*** 0.201** 1 fVIF 3.53 3.04 2.37 3.90 2.57 2.28 4.54 注:***、**、*分别代表各变量在1%、5%和10%水平上显著,下同。 表 2 面板数据单位根检验结果
Table 2. Results of unit root tests for panel data
变量 HT检验 IPS检验 ADF检验 结论 统计值 P值 统计值 P值 统计值 P值 Y 0.216** 0.048 −2.155** 0.016 22.830 0.742 非平稳 ΔY −0.286*** 0 −5.063*** 0 50.205*** 0.006 平稳 X1 −0.110*** 0 −2.155** 0.016 109.715*** 0 平稳 ΔX1 −0.461*** 0 −4.223*** 0 52.590*** 0.003 平稳 X2 0.635 0.997 2.417 0.992 8.894*** 0 非平稳 ΔX2 0.090** 0.013 −1.029*** 0.002 34.472*** 0.007 平稳 X3 0.372 0.489 −1.173 0.120 24.209 0.671 非平稳 ΔX3 −0.055*** 0 −4.255*** 0 67.125*** 0 平稳 X4 −0.096*** 0 −3.721*** 0 48.362* 0.061 平稳 ΔX4 −0.462*** 0 −4.409*** 0 97.731*** 0 平稳 X5 0.460 0.814 0.209 0.583 20.754 0.836 非平稳 ΔX5 0.032*** 0.003 −4.080*** 0 73.273*** 0 平稳 X6 0.069*** 0.001 −3.611*** 0 117.860*** 0 平稳 ΔX6 −0.280*** 0 −4.004*** 0 226.342*** 0 平稳 X7 −0.343*** 0 −5.288*** 0 41.022* 0.054 平稳 ΔX7 −0.579*** 0 −5.518*** 0 47.910** 0.011 平稳 注:Δ表示一阶差分。 表 3 协整检验结果
Table 3. Results of cointegration tests
方法 统计量名 统计值 P值 结论 Pedroni检验 Panel ADF −10.382*** 0 拒绝 Panel PP −9.765*** 0 拒绝 KAO检验 ADF −4.071*** 0 拒绝 表 4 全样本及分地区回归结果
Table 4. Whole sample and sub-regional regression results
变量 甘肃省 河西内陆区 陇东陇中黄土高原区 甘南高原区 南部秦巴山区 中部沿黄河区 X1 0.029***(5.14) 0.094***(6.44) 0.014(1.48) −0.066(−1.42) 0.037(0.72) −0.009(−0.11) X2 0.029(0.92) −0.0003(−0.01) 0.028(0.37) −0.356***(−1.65) 0.290***(1.33) 0.071(0.58) X3 0.021***(4.24) −0.002(−0.22) 0.001(0.09) 0.021**(2.03) −0.026(−1.33) 0.094***(8.84) X4 −0.011(−0.61) −0.017(−0.78) −0.178(−2.44) −0.112***(−2.99) −0.104(−0.99) −0.374***(−2.71) X5 −0.004(−0.60) −0.055***(−2.85) −0.017***(−1.58) −0.080***(−3.07) 0.081*(1.71) 0.024(0.41) X6 0.004(1.15) 0.010(1.50) 0.061***(4.55) 0.021***(3.29) 0.040***(1.55) 0.008(1.15) X7 0.006(0.98) −0.0095(−0.82) 0.023(1.02) 0.058**(2.18) 0.015(0.61) 0.077***(4.21) Constant 0.172*(1.90) −0.689***(−2.69) 0.138(0.83) 1.289**(2.27) −0.060(−0.08) −0.120(−0.11) 观察值 140 50 30 20 20 20 区域数 14 5 3 2 2 2 R2 0.988 0.987 0.989 0.976 0.976 0.999 注:括号内的值为相应的标准误差。 -
[1] 张杏梅, 翟琴琴. 基于水资源生态足迹的陕西省水资源利用与经济增长的脱钩分析[J]. 中国农村水利水电,2021(10):21-26 doi: 10.3969/j.issn.1007-2284.2021.10.004 ZHANG Xingmei, ZHAI Qinqin. Decoupling analysis of water resources utilization and economic growth in Shaanxi Province based on the ecological footprint of water resources[J]. China Rural Water and Hydropower, 2021(10): 21-26. (in Chinese) doi: 10.3969/j.issn.1007-2284.2021.10.004 [2] 杜湘红, 张涛. 水资源环境与社会经济系统耦合发展的仿真模拟——以洞庭湖生态经济区为例[J]. 地理科学,2015,35(9):1109-1115 DU Xianghong, ZHANG Tao. The simulation to coupling development between water resource & environment and socio-economic system: Dongting Lake ecological economic zone as an example[J]. Scientia Geographica Sinica, 2015, 35(9): 1109-1115. (in Chinese) [3] 姚志春, 安琪. 区域水资源生态经济系统耦合关系分析[J]. 水资源与水工程学报,2011,22(5):63-68 YAO Zhichun, AN Qi. Coupling relative analysis of eco-economic system of regional water resources[J]. Journal of Water Resources and Water Engineering, 2011, 22(5): 63-68. (in Chinese) [4] 申晓晶. 基于协同论的水资源配置模型及应用[D]. 北京: 中国水利水电科学研究院, 2018. SHEN Xiaojing. Research on synergetics theory-based water resources allocation model and its application[D]. Beijing: China Institute of Water Resources and Hydropower Research, 2018. (in Chinese) [5] 李爱花, 李原园, 郦建强. 水资源与经济社会及生态环境系统协同发展初探[J]. 人民长江,2011,42(18):117-121 doi: 10.3969/j.issn.1001-4179.2011.18.031 LI Aihua, LI Yuanyuan, LI Jianqiang. Preliminary discussion on synergetic development between water resources and social economy and eco-environment[J]. Yangtze River, 2011, 42(18): 117-121. (in Chinese) doi: 10.3969/j.issn.1001-4179.2011.18.031 [6] 田时中, 丁雨洁. 长三角城市群绿色化测量及影响因素分析——基于26城市面板数据熵值—Tobit模型实证[J]. 经济地理,2019,39(9):94-103 TIAN Shizhong, DING Yujie. Greenization measurement of urban agglomeration in Yangtze River Delta and its influence factors: an empirical study based on the entropy-Tobit model of 26 cities’ panel data[J]. Economic Geography, 2019, 39(9): 94-103. (in Chinese) [7] 赵建吉, 刘岩, 朱亚坤, 等. 黄河流域新型城镇化与生态环境耦合的时空格局及影响因素[J]. 资源科学,2020,42(1):159-171 ZHAO Jianji, LIU Yan, ZHU Yakun, et al. Spatiotemporal differentiation and influencing factors of the coupling and coordinated development of new urbanization and ecological environment in the Yellow River Basin[J]. Resources Science, 2020, 42(1): 159-171. (in Chinese) [8] 童纪新, 任丁维. 浙江省科技创新与水资源环境耦合协调度分析与预测[J]. 资源与产业,2022,24(1):37-45 TONG Jixin, REN Dingwei. Analysis and forecast on coupling coordination between technical innovation and water resources environment in Zhejiang Province[J]. Resources & Industries, 2022, 24(1): 37-45. (in Chinese) [9] 中国经济增长前沿课题组. 城市化、财政扩张与经济增长[J]. 经济研究,2011,46(11):4-20 Research Group on China’s Economic Growth (CASS). Urbanization, fiscal expansion and economic growth[J]. Economic Research Journal, 2011, 46(11): 4-20. (in Chinese) [10] 张梅. 长三角城市群区域经济—资源—环境耦合协调研究[D]. 镇江: 江苏大学, 2018. ZHANG Mei. Coupling and coordination of the economy-resources-environment system in Yangtze Delta Megalopolis[D]. Zhenjiang: Jiangsu University, 2018. (in Chinese) [11] 程国栋. 承载力概念的演变及西北水资源承载力的应用框架[J]. 冰川冻土,2002,24(4):361-367 CHENG Guodong. Evolution of the concept of carrying capacity and the analysis framework of water resources carrying capacity in northwest of China[J]. Journal of Glaciology and Geocryology, 2002, 24(4): 361-367. (in Chinese) [12] 张恬姿, 王小军, 齐广平, 等. 甘肃省水资源-经济社会-生态环境耦合协调演变分析[J]. 水利水运工程学报, 2023(2):53-63. ZHANG Tianzi, WANG Xiaojun, QI Guangping, et al. Analysis of the spatial-temporal evolution characteristics of water resources-economic society-ecological environment coupling and coordination in Gansu Province[J]. Hydro-Science and Engineering, 2023(2): 53-63. (in Chinese) [13] 王富强, 应卓晖, 吕素冰, 等. 京津冀地区水-经济-生态耦合协调发展特征评价[J]. 水资源保护,2022,38(5):80-86 WANG Fuqiang, YING Zhuohui, LÜ Subing, et al. Evaluation of the characteristics of coupling coordinated development of water-economy-ecology system in Beijing-Tianjin-Hebei Region[J]. Water Resources Protection, 2022, 38(5): 80-86. (in Chinese) [14] 汪顺生, 杨金月, 王爱丽, 等. 河南省黄河流域水资源—经济—生态系统耦合协调评价及预测[J]. 湖泊科学,2022,34(3):919-934 doi: 10.18307/2022.0314 WANG Shunsheng, YANG Jinyue, WANG Aili, et al. Evaluation and forecast of coupling coordination of water resources, economy and ecosystem in the Yellow River Basin of Henan Province[J]. Journal of Lake Sciences, 2022, 34(3): 919-934. (in Chinese) doi: 10.18307/2022.0314 [15] 闻豪, 文风. “一带一路”重点省份水资源-经济-生态环境耦合协调分析[J]. 武汉大学学报(工学版),2019,52(10):870-877 WEN Hao, WEN Feng. Coupling and coordination analysis of water resources-economy-ecological environment in key provinces of “the Belt and Road”[J]. Engineering Journal of Wuhan University, 2019, 52(10): 870-877. (in Chinese) [16] 陈强. 高级计量经济学及Stata应用[M]. 北京: 高等教育出版社, 2010. CHEN Qiang. Advanced econometrics and Stata applications[M]. Beijing: Higher Education Press, 2010. (in Chinese) [17] 雍国正, 刘普幸, 姚玉龙, 等. 河西绿洲城市干旱脆弱性评价[J]. 土壤,2014,46(4):749-755 YONG Guozheng, LIU Puxing, YAO Yulong, et al. Evaluation of vulnerability to drought in Hexi oasis[J]. Soils, 2014, 46(4): 749-755. (in Chinese) [18] 敬博, 李同昇, 祁航, 等. 基于供需匹配模型的秦巴山区人地关系均衡状态及空间管控研究[J]. 长江流域资源与环境,2020,29(3):654-667 JING Bo, LI Tongsheng, QI Hang, et al. Research on equilibrium state and space control of man-land relationship in Qinba mountains on the base of supply and demand matching model[J]. Resources and Environment in the Yangtze Basin, 2020, 29(3): 654-667. (in Chinese) -