Study of the influence of rock mass deterioration on valley deformation and high arch dam safety
-
摘要: 拱坝建成蓄水后,水环境的变化会引起坝址区岩体力学性能的改变,进而引起谷幅收缩,影响大坝安全。针对锦屏一级拱坝蓄水初期出现的地基异常变形现象,基于岩体遇水劣化规律和非饱和渗流-应力耦合基本理论,建立岩体遇水劣化模型,采用非线性有限元数值分析方法,研究蓄水初期库区岩体劣化下的谷幅变形规律,进一步分析谷幅收缩对坝体结构的影响。研究表明:库岸岩体劣化对谷幅变形产生直接影响;岩体劣化程度越高,谷幅收缩越明显,坝体上游消落带区域的谷幅变形最为突出;随着水位升高,库岸岩体劣化范围扩大,坝体的最大顺河向位移、最大主拉应力和最大主压应力略有减小。因此,锦屏拱坝蓄水后由岩体劣化造成的谷幅变形不会影响坝体的整体安全。
-
关键词:
- 水-岩耦合作用 /
- 岩体劣化 /
- 非饱和渗流-应力耦合 /
- 谷幅变形 /
- 高拱坝
Abstract: After the arch dam is built and impounded, the change of water environment will change the mechanical properties of rock mass in the dam site area, and then cause valley shrinkage, affecting the safety of the dam. Aiming at the abnormal deformation of the foundation of Jinping Ⅰ arch dam at the initial stage of impoundment, based on the law of rock mass deterioration in water and the basic theory of unsaturated seepage stress coupling, we established a model of rock mass deterioration in water, used nonlinear finite element numerical analysis method to study the valley deformation law under the rock mass deterioration in the reservoir area at the initial stage of impoundment, and further analyzed the impact of valley contraction on the dam structure. The study shows that the deterioration of rock mass on the reservoir bank has a direct impact on valley deformation. The higher the deterioration degree of rock mass, the more obvious the valley width shrinkage, and the valley deformation in the upstream fluctuation zone of the dam body is the most prominent. With the increase of water level, the deterioration range of reservoir bank rock mass expands, and the maximum displacement along the river, the maximum principal tensile stress and the maximum principal compressive stress of the dam body slightly decrease. Therefore, valley deformation caused by rock mass deterioration after impoundment of Jinping Arch Dam will not affect the overall safety of the dam. -
表 1 材料的物理力学参数
Table 1. Physical and mechanical parameters of materials
编号 材料分类 弹性模量/GPa 泊松比 密度/(kg·m−3) 黏聚力/MPa 摩擦因数 渗透系数/(m·s−1) 1 坝体、垫座 24.00 0.17 2 400 1.64 1.00 0 2 防渗帷幕 24.00 0.17 2 400 1.64 1.00 1.00×10−12 3 Ⅱ类岩体 26.00 0.20 2 700 2.00 1.35 2.78×10−10 4 Ⅲ1类 11.50 0.25 2 700 1.50 1.07 1.68×10−10 5 Ⅲ2类 6.50 0.28 2 700 0.90 1.02 5.79×10−9 6 Ⅳ1类 2.40 0.30 2 700 0.60 0.70 6.79×10−8 7 Ⅳ2类 1.40 0.35 2 700 0.40 0.60 1.71×10−7 8 F5、F8、F42-9 0.40 0.38 1 900 0.02 0.30 2.27×10−6 9 F13、F14 0.40 0.38 1 900 0.02 0.30 4.83×10−7 10 FX 6.50 0.28 2 700 0.90 1.02 2.27×10−6 表 2 计算荷载组合及工况
Table 2. Calculated load combination and working condition
计算工况 地应力 自重 静水水位/m 温度荷载 渗流 岩体劣化 1 √ √ 1 880 温降 无 无 2 √ √ 1 880 温降 √ 无 3-H1 √ √ 1 710 温降 √ √ 3-H2 √ √ 1 800 温降 √ √ 3-H3 √ √ 1 840 温降 √ √ 3-H4 √ √ 1 880 温降 √ √ 表 3 谷幅变形监测值与计算值对比
Table 3. Comparison between monitored and calculated values of valley deformation
谷幅测线编号 谷幅变形/mm 监测值 计算值 工况1 工况2 工况3-H1 工况3-H2 工况3-H3 工况3-H4 1 50.00 −5.62 27.74 4.31 13.44 30.28 52.07 2 46.50 −2.21 23.77 3.25 7.95 17.98 45.83 3 41.00 −1.76 22.56 2.34 6.18 14.34 40.83 4 19.83 −7.91 16.92 1.44 2.11 8.13 30.92 5 22.68 −1.59 22.17 2.86 5.19 10.73 28.62 表 4 坝体应力计算结果
Table 4. Calculation results of stress of dam
工况 最大主拉应力 最大主压应力 数值/MPa 位置 数值/MPa 位置 1 3.54 建基面右侧▽1 600 m 20.52 下游面左拱端▽1 650 m 2 1.65 上游面左拱端▽1 800 m 19.83 下游面左拱端▽1 650 m 3-H4 1.67 上游面左拱端▽1 840 m 19.76 下游面左拱端▽1 650 m -
[1] 程恒, 张国新, 廖建新, 等. 高拱坝谷幅变形特征及影响因素分析[J]. 水利水电技术,2020,51(5):65-70 CHENG Heng, ZHANG Guoxin, LIAO Jianxin, et al. Analysis on characteristics and influencing factors of valley deformation of high arch dam[J]. Water Resources and Hydropower Engineering, 2020, 51(5): 65-70. (in Chinese) [2] 徐建荣, 王兴旺, 王建新, 等. 白鹤滩拱坝初期蓄水库岸变形机理研究[J]. 水力发电学报,2022,41(5):31-41 XU Jianrong, WANG Xingwang, WANG Jianxin, et al. Mechanism of reservoir bank deformation during initial impoundment of Baihetan arch dam[J]. Journal of Hydroelectric Engineering, 2022, 41(5): 31-41. (in Chinese) [3] 周绿, 刘明昌, 李小顺. 锦屏一级水电站运行期谷幅变形特性与影响因素分析[J]. 水力发电,2021,47(3):79-83 ZHOU Lü, LIU Mingchang, LI Xiaoshun. Analysis of valley width deformation characteristics and influencing factors during operation period of Jinping I hydropower station[J]. Water Power, 2021, 47(3): 79-83. (in Chinese) [4] 王文娟, 纪丁愈, 李云祯. 特高拱坝施工期谷幅变形演化规律[J]. 水利水运工程学报,2022(3):82-89 WANG Wenjuan, JI Dingyu, LI Yunzhen. Evolution law of valley deformation during construction of extra-high arch dam[J]. Hydro-Science and Engineering, 2022(3): 82-89. (in Chinese) [5] 胡江. 特高拱坝运行初期变形监测预报模型及构建方法[J]. 水利水运工程学报,2020(5):63-71 doi: 10.12170/20190908001 HU Jiang. Deformation forecasting model and its modeling method of super high arch dams during initial operation periods[J]. Hydro-Science and Engineering, 2020(5): 63-71. (in Chinese) doi: 10.12170/20190908001 [6] 赵二峰, 顾冲时. 特高拱坝结构性态诊断与监控方法述评[J]. 水利水运工程学报,2023(1):16-26 ZHAO Erfeng, GU Chongshi. Review on diagnosis and monitornig methods of structural behavior of superhigh arch dams[J]. Hydro-Science and Engineering, 2023(1): 16-26. (in Chinese) [7] 杨杰, 胡德秀, 关文海. 李家峡拱坝左岸高边坡岩体变位与安全性态分析[J]. 岩石力学与工程学报,2005,24(19):3551-3560 YANG Jie, HU Dexiu, GUAN Wenhai. Analysis of high slope rock deformation and safety performance for left bank of Lijiaxia arch dam[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(19): 3551-3560. (in Chinese) [8] 杨强, 潘元炜, 程立, 等. 高拱坝谷幅变形机制及非饱和裂隙岩体有效应力原理研究[J]. 岩石力学与工程学报,2015,34(11):2258-2269 YANG Qiang, PAN Yuanwei, CHENG Li, et al. Mechanism of valley deformation of high arch dam and effective stress principle for unsaturated fractured rock mass[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(11): 2258-2269. (in Chinese) [9] YANG X, REN X H, REN Q W. Study on influence of construction and water storage process on valley deformation of high arch dam[J]. Bulletin of Engineering Geology and the Environment, 2022, 81(7): 1-20. [10] 任青文, 张林飞, 沈雷, 等. 考虑非饱和渗流过程的岩体变形规律分析[J]. 岩石力学与工程学报,2018,37(增刊2):4100-4107 REN Qingwen, ZHANG Linfei, SHEN Lei, et al. Analysis of deformation law of rock mass considering unsaturated seepage process[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(Suppl2): 4100-4107. (in Chinese) [11] 辛长虹, 赵引. 考虑非饱和渗流的谷幅变形对高拱坝影响分析[J]. 水利水运工程学报,2021(4):36-45 doi: 10.12170/20210114003 XIN Changhong, ZHAO Yin. Analysis of the influence of valley width deformation on high arch dam considering unsaturated seepage[J]. Hydro-Science and Engineering, 2021(4): 36-45. (in Chinese) doi: 10.12170/20210114003 [12] 杨强, 潘元炜, 程立, 等. 蓄水期边坡及地基变形对高拱坝的影响[J]. 岩石力学与工程学报,2015,34(增刊2):3979-3986 YANG Qiang, PAN Yuanwei, CHENG Li, et al. Impounding influence of slope and foundation deformation on high arch dam[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(Suppl2): 3979-3986. (in Chinese) [13] ZHAO Z H, GUO T C, NING Z Y, et al. Numerical modeling of stability of fractured reservoir bank slopes subjected to water-rock interactions[J]. Rock Mechanics and Rock Engineering, 2018, 51(8): 2517-2531. doi: 10.1007/s00603-017-1360-6 [14] 刘新荣, 傅晏, 郑颖人, 等. 水岩相互作用对岩石劣化的影响研究[J]. 地下空间与工程学报,2012,8(1):77-82, 88 doi: 10.3969/j.issn.1673-0836.2012.01.013 LIU Xinrong, FU Yan, ZHENG Yingren, et al. A review on deterioration of rock caused by water-rock interaction[J]. Chinese Journal of Underground Space and Engineering, 2012, 8(1): 77-82, 88. (in Chinese) doi: 10.3969/j.issn.1673-0836.2012.01.013 [15] 于超云. 水对岩石力学性质影响的试验及数值模拟研究[D]. 大连: 大连理工大学, 2019. YU Chaoyun. Experimental study and numerical simulation on the effect of water on rock mechanical properties[D]. Dalian: Dalian University of Technology, 2019. (in Chinese) [16] 阎岩. 渗流作用下岩石蠕变试验与变参数蠕变方程的研究[D]. 北京: 清华大学, 2009. YAN Yan. Research on rock creep tests under seepage flow and variable parameters creep equation[D]. Beijing: Tsinghua University, 2009. (in Chinese) [17] ERGULER Z A, ULUSAY R. Water-induced variations in mechanical properties of clay-bearing rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(2): 355-370. doi: 10.1016/j.ijrmms.2008.07.002 [18] 徐磊, 张菁倪, 崔姗姗, 等. 蓄水初期库盘非稳定渗流场时空演化与谷幅变形规律分析[J]. 应用基础与工程科学学报,2022,30(6):1441-1454 XU Lei, ZHANG Jingni, CUI Shanshan, et al. The temporal and spatial evolution of unsteady seepage and the valley deformation of reservoir basin during initial impoundment period[J]. Journal of Basic Science and Engineering, 2022, 30(6): 1441-1454. (in Chinese) [19] 何如许. 锦屏一级水电站左岸边坡蓄水变形响应研究[D]. 成都: 成都理工大学, 2020. HE Ruxu. Study on deformation response of left bank slope impoundment of Jinping Ⅰ hydropower station[D]. Chengdu: Chengdu University of Technology, 2020. (in Chinese) [20] 王伟, 龚传根, 朱鹏辉, 等. 大理岩干湿循环力学特性试验研究[J]. 水利学报,2017,48(10):1175-1184 doi: 10.13243/j.cnki.slxb.20170231 WANG Wei, GONG Chuangen, ZHU Penghui, et al. Experimental study on mechanical properties of marble under hydraulic weathering coupling[J]. Journal of Hydraulic Engineering, 2017, 48(10): 1175-1184. (in Chinese) doi: 10.13243/j.cnki.slxb.20170231 [21] 杨宝全, 张林, 陈媛, 等. 锦屏一级高拱坝整体稳定物理与数值模拟综合分析[J]. 水利学报,2017,48(2):175-183 doi: 10.13243/j.cnki.slxb.20160361 YANG Baoquan, ZHANG Lin, CHEN Yuan, et al. Experimental and numerical comprehensive analysis on overall stability of Jinping I high arch dam[J]. Journal of Hydraulic Engineering, 2017, 48(2): 175-183. (in Chinese) doi: 10.13243/j.cnki.slxb.20160361 [22] 杨宝全, 张林, 陈媛, 等. 高拱坝坝肩软弱结构面HM耦合效应试验研究[J]. 防灾减灾工程学报,2017,37(4):636-643 doi: 10.13409/j.cnki.jdpme.2017.04.019 YANG Baoquan, ZHANG Lin, CHEN Yuan, et al. Experimental study on HM coupling effect of weak structural planes for high arch dam abutment[J]. Journal of Disaster Prevention and Mitigation Engineering, 2017, 37(4): 636-643. (in Chinese) doi: 10.13409/j.cnki.jdpme.2017.04.019 [23] 邓华锋, 李建林, 孙旭曙, 等. 水作用下砂岩断裂力学效应试验研究[J]. 岩石力学与工程学报,2012,31(7):1342-1348 doi: 10.3969/j.issn.1000-6915.2012.07.005 DENG Huafeng, LI Jianlin, SUN Xushu, et al. Experimental research on fracture mechanical effect of sandstone under water corrosion[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(7): 1342-1348. (in Chinese) doi: 10.3969/j.issn.1000-6915.2012.07.005 [24] 费康, 彭劼. ABAQUS岩土工程实例详解[M]. 北京: 人民邮电出版社, 2017: 402. FEI Kang, PENG Jie. Detailed explanation of ABAQUS geotechnical engineering examples[M]. Beijing: Posts & Telecom Press, 2017: 402. (in Chinese) -