留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

国内外高桩码头抗震性能和设计方法研究进展Ⅱ:桩-土相互作用

高树飞 贡金鑫 冯云芬

高树飞, 贡金鑫, 冯云芬. 国内外高桩码头抗震性能和设计方法研究进展Ⅱ:桩-土相互作用[J]. 水利水运工程学报, 2017, (1): 57-72. doi: 10.16198/j.cnki.1009-640X.2017.01.009
引用本文: 高树飞, 贡金鑫, 冯云芬. 国内外高桩码头抗震性能和设计方法研究进展Ⅱ:桩-土相互作用[J]. 水利水运工程学报, 2017, (1): 57-72. doi: 10.16198/j.cnki.1009-640X.2017.01.009
GAO Shufei, GONG Jinxin, FENG Yunfen. Advances in research on seismic performance and design methods for pile-supported wharves Part Ⅱ: Pile-soil interaction[J]. Hydro-Science and Engineering, 2017, (1): 57-72. doi: 10.16198/j.cnki.1009-640X.2017.01.009
Citation: GAO Shufei, GONG Jinxin, FENG Yunfen. Advances in research on seismic performance and design methods for pile-supported wharves Part Ⅱ: Pile-soil interaction[J]. Hydro-Science and Engineering, 2017, (1): 57-72. doi: 10.16198/j.cnki.1009-640X.2017.01.009

国内外高桩码头抗震性能和设计方法研究进展Ⅱ:桩-土相互作用

doi: 10.16198/j.cnki.1009-640X.2017.01.009
基金项目: 

交通运输部项目“强震区港口工程结构抗震设计研究” JTSBD 2013 02 130

详细信息
    作者简介:

    高树飞(1989—),男,安徽蚌埠人,博士研究生,主要从事港口工程结构设计与抗震研究。E-mail:gaosf1989@qq.com

  • 中图分类号: U656.1+13

Advances in research on seismic performance and design methods for pile-supported wharves Part Ⅱ: Pile-soil interaction

  • 摘要: 通过对高桩码头震害的分析,分析了高桩码头破坏的主要原因。在此基础上,从高桩码头抗震设计方法、桩-土相互作用、斜桩和桩-上部结构连接的抗震性能等方面,论述了国内外高桩码头抗震研究的进展,总结了这些研究成果在高桩码头抗震设计规范中的应用,指出了高桩码头抗震性能研究的不足及需要深入研究的问题。对国内如何吸收国外高桩码头抗震的研究成果及抗震设计规范的修订方向提出了建议。该系列论文分为3部分,此为第2部分,主要介绍高桩码头抗震计算中桩-土相互作用的评估方法以及高桩码头的动力分析方法和研究成果。研究表明,评估桩-土相互作用的方法已较为完善,而对高桩码头抗倒塌性能以及近断层地震动下码头反应特性的研究还有待深入。
  • 图  1  作用在桩上的惯性作用和运动作用

    Figure  1.  Effects of inertial and kinematic forces on piles

    图  2  由惯性作用和运动作用引起的塑性铰

    Figure  2.  Plastic hinge formation due to inertial and kinematic loading

    图  3  运动作用评估流程

    Figure  3.  Flow chart for evaluation of kinematic loading

    图  4  滑动层模型

    Figure  4.  Sliding layer model

    图  5  码头设计中常用的抛石p-y曲线

    Figure  5.  p-y curves of rockfill typically used for wharf design

    图  6  摩擦和与深度无关的自锁抗力

    Figure  6.  Reaction of friction and depth independent interlocking

    图  7  下坡向修正系数βs

    Figure  7.  Downslope modification factor βs

    图  8  下坡向修正系数βsr

    Figure  8.  Downslope modification factor βsr

    图  9  液化砂土的p-乘子与修正标准贯入击数的关系

    Figure  9.  Relationships between p-multiplier and corrected SPT blow counts for liquefied sand

    图  10  液化砂土的p-乘子与超孔压比的关系

    Figure  10.  Relationships between p-multiplier and excessive pore pressure ratio for liquefied sand

    图  11  修正的Takeda模型

    Figure  11.  Modified Takeda model

    图  12  超级桩模型

    Figure  12.  Super pile model

    图  13  液化土中桩基破坏形式

    Figure  13.  Pile foundation damage mechanisms in liquefied ground

  • [1] TOKIMATSU K, SUZUKI H, SATO M. Effects of inertial and kinematic interaction on seismic behavior of pile with embedded foundation[J]. Soil Dynamics and Earthquake Engineering, 2005, 25(7): 753-762. http://linkinghub.elsevier.com/retrieve/pii/S0267726105000618
    [2] ARULMOLI A K, MARTIN G R. Seismic soil-structure interaction issues for pile-supported piers and wharves[C]// Proceedings of Conference on Lifeline Earthquake Engineering in a Multihazard Environment. 2009:930-940.
    [3] ARULMOLI A K, JOHNSON G S, YIN P, et al. Geotechnical considerations and soil-structure interaction: proposed ASCE standards for seismic design of piers and wharves[C]// Geotechnical Earthquake Engineering and Soil Dynamics Ⅳ Congress, 2008: 18-22.
    [4] Port of Long Beach. Wharf design criteria (Version 3.0)[S]. 2012.
    [5] Earth Mechanics Inc. Port-wide ground motion study, Port of Long Beach, California[R]. California: Earth Mechanics Inc, 2006.
    [6] Earth Mechanics Inc. Port-wide ground motion and Palos Verdes fault study, Port of Los Angeles, California[R]. California: Earth Mechanics Inc, 2006.
    [7] ANDERSON D G, MARTIN G R. NCHRP report 611-seismic analysis and design of retaining walls, buried structures, slopes, and embankments[R]. WASHINGTON, DC: Transportation Research Board, 2008.
    [8] AMBRASEYS N N, MENU J M. Earthquake-induced ground displacements[J]. Earthquake Engineering and Structural Dynamics, 1988, 16(7):985-1006. doi:  10.1002/(ISSN)1096-9845
    [9] SAYGILI G, RATHJE E M. Empirical predictive models for earthquake-induced sliding displacements of slopes[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(6): 790-803. doi:  10.1061/(ASCE)1090-0241(2008)134:6(790)
    [10] 高树飞, 贡金鑫, 冯云芬.基于规范反应谱的码头岸坡地震永久变形计算[J].水利水运工程学报, 2015(3):23-31. http://slsygcxb.cnjournals.org/ch/reader/view_abstract.aspx?file_no=201503006&flag=1

    GAO Shufei, GONG Jinxin, FENG Yunfeng. Estimation of earthquake-induced slope permanent deformation based on response spectrum in code[J]. Hydro-Science and Engineering, 2015(3):23-31. (in Chinese) http://slsygcxb.cnjournals.org/ch/reader/view_abstract.aspx?file_no=201503006&flag=1
    [11] BLANDON C A. Seismic analysis and design of pile supported wharves[D]. Pavia, Italy: Rose School, 2007.
    [12] BOULANGER R W, CHANG D, GULERCE U, et al. Evaluating pile pinning effects on abutments over liquefied ground[C]// Seismic Performance and Simulation of Pile Foundations in Liquefied and Laterally Spreading Ground. ASCE, 2006: 306-318.
    [13] MCCULLOUGH N J. The seismic geotechnical modeling, performance, and analysis of pile-supported wharves[D]. Oregon: Oregon State University, 2003.
    [14] MCCULLOUGH N J, DICKENSON S E, SCHLECHTER S M, et al. Centrifuge seismic modeling of pile-supported wharves[J]. Geotechnical Testing Journal, 2007, 30(5): 349. http://www.astm.org/DIGITAL_LIBRARY/JOURNALS/GEOTECH/PAGES/GTJ14066.htm
    [15] MATLOCK H. Correlations for design of laterally loaded piles in soft clay[C]// Proceeding Offshore Technology Conference, Houston, 1970:577-594.
    [16] O'NEILL M W. Group action in offshore piles[C]// WRIGHT S G. Geotechnical Practice in Offshore Engineering. New York, 1983:25-64.
    [17] American Petroleum Institute. API recommended practice 2A-WSD (RP 2A-WSD), 21st ed recommended practice for planning, designing and constructing fixed offshore platforms-working stress design[S].
    [18] JTS 167-4—2012港口工程桩基规范[S].

    JTS 167-4—2012 Code for pile foundation of harbor engineering[S]. (in Chinese)
    [19] REESE L C, COX W R, KOOP F D. Analysis of laterally loaded piles in sand[C]// Proceeding Offshore Technology Conference, Houston, 1974:473-484.
    [20] REESE L C, WELCH R C. Lateral loading of deep foundations in stiff clay[J]. Journal of Geotechnical Engineering Division, 1975, 101(7): 633-649. http://trid.trb.org/view.aspx?id=40148
    [21] REESE L C, COX W R, KOOP F D. Field testing and analysis of laterally loaded piles in stiff clay[C]// Proceeding Offshore Technology Conference, Houston, 1975: 473-484.
    [22] EMI. Bi-Linear p-y curves for pier 400 piles and pendent wall[R]. California: Fugro West Inc, 1999.
    [23] KAWAMATA Y. Seismic performance of a pile-supported container wharf structures in rockfill[D]. Oregon: Oregon State University, 2009.
    [24] DIAZ G M, PATTON B W, ARMSTRONG G L, et al. Lateral load tests of piles in sloping rock fill[C]// Analysis and Design of Pile Foundations, ASCE, 1984: 214-231.
    [25] MCCULLOUGH N J, DICKENSON S E. The behavior of piles in sloping rock fill at marginal wharves[C]// Ports 2004: Port Development in the Changing World, ASCE, 2004: 1-10.
    [26] 金伟良, 朱玉明, 李林普. p-y曲线法在海洋工程地基中应用的探讨[J].中国海上油气(工程), 1992, 4(4): 29-40. http://www.cnki.com.cn/Article/CJFDTOTAL-HSYQ199204006.htm

    JIN Weiliang, ZHU Yuming, LI Linpu. Research into application of p-y curve to offshore engineering foundation[J]. China Offshore Oil and Gas (Engineering), 1992, 4(4): 29-40. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-HSYQ199204006.htm
    [27] GEORGIADIS M. Development of p-y curves for layered soils[C]// Proceeding of Geotechnical Practice in Offshore Engineering, ASCE, 1983: 536-545.
    [28] KAWAMATA Y, BLANDON C A, ASHFORD S A. Seismic performance of container wharf piles: test results[R]. California: University of California at San Diego, California, 2008.
    [29] ASCE/COPRI 61-14 Seismic design of piers and wharves[S].
    [30] CHEN C Y, MARTIN G R. Effect of embankment slope on lateral response of piles[C]// Proceedings of the 2nd International FLAC Conference, Lyon, France, 2001:47-54.
    [31] MEZAZIGH S, LEVACHER D. Laterally loaded piles in sand: slope effect on p-y reaction curves[J]. Canadian Geotechnical Journal, 1998, 35(3): 433-441. doi:  10.1139/t98-016
    [32] MCGANN C R, ARDUINO P, MACKENZIE-HELNWEIN P. Applicability of conventional p-y relations to the analysis of piles in laterally spreading soil[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 137(6): 557-567. https://trid.trb.org/view/1111161
    [33] WILSON D W, BOULANGER R W, KUTTER B L. Seismic lateral resistance of liquefying sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(10):898-906. doi:  10.1061/(ASCE)1090-0241(2000)126:10(898)
    [34] BOULANGER R W, KUTTER B L, BRANDENBERG S J, et al. Pile foundations in liquefied and laterally spreading ground during earthquakes: centrifuge experiments and analyses[R]. California: University of California at Davis, 2003.
    [35] South Carolina Department of Transportation (SCDOT). Geotechnical design manual[S]. 2010.
    [36] BRANDENBERG S J. Behavior of pile foundations in liquefied and laterally spreading ground[D].California: University of California at Davis, 2005.
    [37] Architectural Institute of Japan (AIJ). Recommendations for design of building foundations[S].2001.(in Japanese)
    [38] DOBRY R, TABOADA V, LIU L. Centrifuge modeling of liquefaction effects during earthquakes[C]// Proceeding of 1st International Conference on Earthquake Geotechnical Engineering, Tokyo, 1995:1291-1324.
    [39] DAVISON M T, ROBINSON K E. Bending and buckling of partially embedded piles[C]// Proceedings of 6th International Conference of Soil Mechanics and Foundation Engineering, Montreal, Canada, 1965:243-246.
    [40] 张学言.确定弹性桩嵌固点深度的方法[J].水运工程, 1980, 10: 17-21. http://www.cnki.com.cn/Article/CJFDTOTAL-SYGC198010004.htm

    ZHANG Xueyan. Method for determination of elastic pile depth to fixity[J]. Port & Waterway Engineering, 1980, 10: 17-21. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-SYGC198010004.htm
    [41] CHEN Y. Assessment on pile effective lengths and their effects on design—Ⅰ. Assessment[J]. Computers & Structures, 1997, 62(2): 265-286. http://linkinghub.elsevier.com/retrieve/pii/S0045794996002015
    [42] BUDEK A M, PRIESTLEY M J N, BENZONI G. Inelastic seismic response of bridge drilled-shaft RC pile/columns[J]. Journal of Structural Engineering, 2000, 126(4): 510-517. doi:  10.1061/(ASCE)0733-9445(2000)126:4(510)
    [43] American Association of State Highway and Transportation Officials (AASHTO).LRFD bridge design specifications[S]. 3rd ed, 2004.
    [44] JTS 167-1—2010高桩码头设计与施工规范[S].

    JTS 167-1—2010 Design and construction code for open type wharf on piles[S]. (in Chinese)
    [45] Permanent International Association for Navigation Congresses (PIANC). Seismic design guidelines for port structures[S]. 2001.
    [46] UFC 4-151-10 General criteria for waterfront construction[S].
    [47] 日本港湾協会. 港湾の施設の技術上の基準·同解説[S]. 2007.

    Harbor Institute of Japan. Technical standards and commentaries for port and harbour facilities in Japan[S]. 2007. (in Japanese))
    [48] 桒原直範, 長尾毅. 直杭式桟橋の動的特性を考慮した照査用震度の算出方法に関する基礎的研究[R]. 日本国土交通省国土技術政策総合研究所, 2010.

    NAONORI Kuwabara, TAKASHI Nagao. Fundamental study on the evaluation method of seismic coefficients of pile supported wharves considering the dynamic characteristics[R]. National Institute for Land and Infrastructure Management Ministry of Land, Infrastructure, Trasnport and Tourism, Japan, 2010. (in Japanese))
    [49] AROTHIRAMAN R, BOOMINATHAN A. Depth of fixity of piles in clay under dynamic lateral load[J]. Geotechnical and Geological Engineering, 2013, 31(2): 447-461. doi:  10.1007/s10706-012-9597-z
    [50] WERNER S D. Seismic guidelines for ports[M]. New York: ASCE, 1998.
    [51] 高树飞, 贡金鑫.基于Winkler地基梁模型的高桩码头非线性时程分析[J].中国港湾建设, 2015, 35(3):14-20. doi:  10.7640/zggwjs201503003

    GAO Shufei, GONG Jinxin. Nonlinear time-history analysis of pile-supported wharf based on model of beam on Winkler foundation[J]. China Harbour Engineering, 2015, 35(3):14-20. (in Chinese) doi:  10.7640/zggwjs201503003
    [52] SHAFIEEZADEH A. Seismic vulnerability assessment of wharf structures[D]. Georgia: Georgia Institute of Technology, 2011.
    [53] YANG Dongshan. Deformation-based seismic design models for waterfront structures[D]. Oregon: Oregon State University, 1999.
    [54] 陈国兴.岩土地震工程学[M].北京:科学出版社, 2007.

    CHEN Guoxing. Geotechnical earthquake engineering[M]. Beijing: Science Press, 2007. (in Chinese)
    [55] 胡少伟, 牛志国, 陆俊.码头成层地基中地震动的非线性反演方法[J].水运工程, 2010 (4): 7-10. http://www.cnki.com.cn/Article/CJFDTOTAL-SYGC201004006.htm

    HU Shaowei, NIU Zhiguo, LU Jun. Nonlinear inversion method of ground motion in layered soil of a quay[J]. Port & Waterway Engineering, 2010 (4): 7-10. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-SYGC201004006.htm
    [56] MATLOK H, FOO H C, BRAYANT L M. Simulation of lateral pile behavior under earthquake motion[C]// Specialty Conference on Earthquake Engineering and Soil Dynamics, Pasadena, 1978, (7): 600-619.
    [57] NOVAK M. Dynamic stiffness and damping of piles[J]. Canadian Geotechnical Journal, 1974, 11(4): 574-598. doi:  10.1139/t74-059
    [58] NOGAMI T, KONAGAI K. Time domain axial response of dynamically loaded single piles[J]. Journal of Engineering Mechanics, 1986, 112(11): 1241-1252. doi:  10.1061/(ASCE)0733-9399(1986)112:11(1241)
    [59] BOULANGER R W, CURRAS C J, KUTTER B L, et al. Seismic soil-pile-structure interaction experiments and analyses[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125(9): 750-759. doi:  10.1061/(ASCE)1090-0241(1999)125:9(750)
    [60] VARUN V, ASSIMAKI D, SHAFIEEZADEH A. Soil-pile-structure interaction simulations in liquefiable soils via dynamic macroelements: formulation and validation[J].Journal of Soil Dynamics and Earthquake Engineering, 2013, 47(1): 92-107. http://www.sciencedirect.com/science/article/pii/S0267726112000711
    [61] TAKEDA T, SOZEN M A, NIELSEN N N. Reinforced concrete response to simulated earthquakes[J]. Journal of the Structural Division, 1970, 96(12): 2557-2573. http://www.worldcat.org/title/reinforced-concrete-response-to-simulated-earthquakes/oclc/51990170
    [62] PRIESTLEY M J N, CALVI G M, KOWALSKY M J. Displacement-based seismic design of structures[M]. IUSS Press, Pavia, Italy, 2007.
    [63] BENZONI G, PRIESTLEY M J N. Seismic response of linked marginal wharf segments[J]. Journal of Earthquake Engineering, 2003, 7(4): 513-539. doi:  10.1142/S1363246903001346
    [64] MARTIN G R, LEW M. Recommended procedures for implementation of DMG special publication 117, guidelines for analyzing and mitigating liquefaction hazards in California[R]. Southern California Earthquake Center, University of Southern California, 1999.
    [65] YOUD T L, IDRISS I M, ANDRUS R D, et al. Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(10): 817-833. doi:  10.1061/(ASCE)1090-0241(2001)127:10(817)
    [66] BOULANGER R W, IDRISS I M. Liquefaction susceptibility criteria for silts and clays[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(11): 1413-1426. doi:  10.1061/(ASCE)1090-0241(2006)132:11(1413)
    [67] 李颖, 贡金鑫.国内外抗震规范地基土液化判别方法比较[J].水运工程, 2008 (8): 30-38. http://www.cnki.com.cn/Article/CJFDTOTAL-SYGC200808012.htm

    LI Ying, GONG Jinxin. Comparative study on liquefaction identifying method of ground soil in seismic design code worldwide[J]. Port & Waterway Engineering, 2008 (8): 30-38. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-SYGC200808012.htm
    [68] ROTH W H, DAWSON E M, MEHRAIN M, et al. Analyzing the seismic performance of wharves, part 1: Structural-engineering approach[C]// Proceedings of TCLEE 2003: 6th US Conference and Workshop on Lifeline Earthquake Engineering, 2003: 385-394.
    [69] ROTH W H, DAWSON E M. Analyzing the seismic performance of wharves, part 2: SSI analysis with non-linear, effective-stress soil models[C]// Advancing Mitigation Technologies and Disaster Response for Lifeline Systems. ASCE, 2003: 395-404.
    [70] DONAHUE M J, DICKENSON S E, MILLER T H, et al. Implications of the observed seismic performance of a pile-supported wharf for numerical modeling[J]. Earthquake Spectra, 2005, 21(3): 617-634. doi:  10.1193/1.1978887
    [71] YAN L, ARULMOLI K, WEISMAIR M, et al. Seismic soil-structure interaction analyses of an underwater bulkhead and wharf system[C]// Geotechnical Engineering for Transportation Projects, ASCE, 2004: 547-555.
    [72] 丁伟农, 高明.非线性土体桩土相互作用对高桩码头抗震设计影响的分析[J].港工技术, 1996 (4):30-41. http://www.cnki.com.cn/Article/CJFDTOTAL-GAOG199604008.htm

    DING Weinong, GAO Ming. A study on effects of nonlinear pile-soil interaction upon seismic design of piled wharf[J].Port Engineering Technology, 1996 (4): 30-41. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-GAOG199604008.htm
    [73] 衣伟.考虑桩土相互作用高桩码头单桩地震反应[J].港口工程, 1997 (4): 30-33. http://www.cnki.com.cn/Article/CJFDTOTAL-GKGC199704006.htm

    YI Wei. Single pile seismic response for pile-supported wharf considering pile-soil interaction[J].China Harbour Engineering, 1997 (4): 30-33. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-GKGC199704006.htm
    [74] 李颖, 贡金鑫.考虑桩土相互作用的高桩码头非线性地震反应分析[J].水利水运工程学报, 2010 (2): 92-99. http://slsygcxb.cnjournals.org/ch/reader/view_abstract.aspx?file_no=20100237&flag=1

    LI Ying, GONG Jinxin. Nonlinear seismic response considering soil-pile analysis of wharf structure dynamic interaction[J]. Hydro-Science and Engineering, 2010 (2): 92-99. (in Chinese) http://slsygcxb.cnjournals.org/ch/reader/view_abstract.aspx?file_no=20100237&flag=1
    [75] 王守忠.高桩码头平移扭转耦联振动分析与地震反应[J].港口工程, 1989(1): 1-12. http://www.cnki.com.cn/Article/CJFDTOTAL-GKGC198901000.htm

    WANG Shouzhong. Analysis of coupled translation and torsion vibration and seismic response of pile-supported wharves[J]. China Harbour Engineering, 1989(1): 1-12. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-GKGC198901000.htm
    [76] 连竞, 宋向群.高桩码头动力特性及地震反应[J].港工技术, 1991 (1): 7-12. http://www.cnki.com.cn/Article/CJFDTOTAL-GAOG199101001.htm

    LIAN Jing, SONG Xiangqun. Dynamic characteristics and seismic response for pile-supported wharves[J]. Port Engineering Technology, 1991 (1): 7-12. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-GAOG199101001.htm
    [77] 连竞, 宋向群.高桩墩的地震扭转效应[J].水运工程, 1994 (12): 43-45. http://www.cnki.com.cn/Article/CJFDTOTAL-SYGC412.009.htm

    LIAN Jing, SONG Xiangqun. Seismic torsional effect for pile-supported pier[J]. Port & Waterway Engineering, 1994 (12): 43-45. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-SYGC412.009.htm
    [78] 何良德, 张海荣, 杨洋, 等.考虑扭转效应的全直桩码头动力简化计算方法[J].河海大学学报(自然科学版), 2013, 41(3): 265-270. http://www.cnki.com.cn/Article/CJFDTOTAL-HHDX201303018.htm

    HE Liangde, ZHANG Hairong, YANG Yang. Simplified dynamic calculation method for all-vertical-piled wharf considering torsional effect[J]. Journal of Hohai University (Natural Sciences), 2013, 41(3): 265-270. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-HHDX201303018.htm
    [79] 王滨, 李颖, 朱彬彬, 等.平面形状不规则对高桩码头地震效应的影响[J].水电能源科学, 2014, 32(1): 84-88. http://www.cnki.com.cn/Article/CJFDTOTAL-SDNY201401023.htm

    WANG Bin, LI Ying, ZHU Binbin, et al. Seismic effect of irregular plane shape on pile-supported wharf[J]. Water Resources and Power, 2014, 32(1): 84-88. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-SDNY201401023.htm
    [80] TOKIMATSU K, MIZUNO H, KAKURAI M. Building damage associated with geotechnical problems[C]// Special Issue of Soils and Foundations, Japanese Geotechnical Society, 1996:219-234.
    [81] DODDS A M, MARTIN G R, ARULMOLI K, et al. Lifeline upgrade for a wharf in soft ground[C]// Proceedings of Geo-Trans, ASCE, 2004: 1739-1746.
    [82] SMITH D, NAESGAARD E, KULLMANN H. Seismic design of a new pile and deck structure adjacent to existing caissons founded on potentially liquefiable ground in Vancouver, BC[C]// Proceedings of 13th World Conference on Earthquake Engineering, Vancouver, BC, Canada. 2004.
    [83] MORIWAKI Y, TAN P, CHOI Y. Nonlinear analyses for design of piles in liquefying soils at port facilities[C]// Seismic Performance and Simulation of Pile Foundations in Liquefied and Laterally Spreading Ground. ASCE, 2006: 192-203.
    [84] DICKENNSON S, YANG S, SCHWARM D, et al. Use of strong motion records to validate dynamic soil-foundation-structure interaction models for pile supported wharves[C]// Proceedings of SMIP13 Seminar on Utilization of Strong-Motion Data, Los Angeles, California, 2013:47-66.
    [85] DICKENSON S, YANG S, SCHWARM, et al. Seismic performance analysis of pile-supported wharves subjected to long-duration ground motions[C]// SMIP14 Proceedings of Seminar on Utilization of Strong-Motion Data, Los Angeles, California, 2014: 63-82.
    [86] MAGEAU D W, CHIN K H. Finite element modeling of new marine terminal at the port of Tacoma[C]// Ports 2007: 30 Years of Sharing Ideas: 1977—2007. ASCE, 2007: 1-10.
    [87] SHAFIEEZADEH A, DESROCHES R, RIX G J, et al. Seismic performance of pile-supported wharf structures considering soil-structure interaction in liquefied soil[J]. Earthquake Spectra, 2012, 28(2): 729-757. doi:  10.1193/1.4000008
    [88] SHAFIEEZADEH A, DESROCHES R, RIX G J, et al. Three-dimensional wharf response to far-field and impulsive near-field ground motions in liquefiable soils[J]. Journal of Structural Engineering, 2012, 139(8): 1395-1407. doi:  10.1061/%28ASCE%29ST.1943-541X.0000642?journalCode=jsendh
    [89] 交通部第一航务工程局科学研究所. 天津新港集装箱码头强迫振动试验报告[R]. 天津: 交通部第一航务工程局科学研究所, 1979.

    Scientific Research Institute of CCCC First Harbor Engineering Bureau. Report on forced vibrationtests of container wharf at Tianjin New Port[R]. Tianjin: Scientific Research Institute of CCCC First Harbor Engineering Bureau, 1979. (in Chinese)
    [90] 高明, 赵颖, 靳道斌.桩基码头抗震试验研究及动力分析[J].水利水运科学研究, 1981(4) :37-50. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=slsy198104003&dbname=CJFD&dbcode=CJFQ

    GAO Ming, ZHAO Yin, JING Daobin. Seismic experimental studies and dynamic analysis of pile-supported piers[J]. Journal of Nanjing Hydraulic Research Institute, 1981 (4):37-50. (in Chinese) http://kns.cnki.net/KCMS/detail/detail.aspx?filename=slsy198104003&dbname=CJFD&dbcode=CJFQ
    [91] 侯瑜京, 韩连兵, 梁建辉.深水港码头围堤和群桩结构的离心模型试验[J].岩土工程学报, 2004, 26(5): 594-600. http://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200405003.htm

    HOU Yujing, HAN Lianbing, LIANG Jianhui. Centrifuge modeling of sea dike and pile groups in a harbour[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(5): 594-600. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200405003.htm
    [92] WSLSH S M, ASHFORD S A. Full-scale lateral load testing of pier 3 at the port of Long Beach[R]. California: University of California at San Diego, 2004.
    [93] FERRITTO J, DICKENSON S, PRIESTLEY N, et al. Seismic criteria for California marine oil terminals[R]. California: Naval Facilities Engineering Service Center, 1999.
    [94] TAKAHASHI A, TAKEMURA J. Liquefaction-induced large displacement of pile-supported wharf[J]. Soil Dynamics and Earthquake Engineering, 2005, 25(11): 811-825. doi:  10.1016/j.soildyn.2005.04.010
    [95] CHANG W J, CHEN J F, HO H C, et al. In situ dynamic model test for pile-supported wharf in liquefied sand[J]. Geotechnical Testing Journal, 2010, 33(3): 212-224. http://www.astm.org/cgi-bin/googleScholar.cgi?GTJ102425+PDF
    [96] BOROSCHEK R L, BAESLER H, VEGA C. Experimental evaluation of the dynamic properties of a wharf structure[J]. Engineering Structures, 2011, 33(2): 344-356. doi:  10.1016/j.engstruct.2010.10.014
  • [1] 邹德高, 滕晓威, 刘京茂, 王峰, 刘鑫.  地基液化离心机试验的数值分析及验证 . 水利水运工程学报, 2019, (6): 116-124. doi: 10.16198/j.cnki.1009-640X.2019.06.013
    [2] 冯云芬, 高树飞.  基于位移的高桩码头地震易损性分析 . 水利水运工程学报, 2019, (3): 76-84. doi: 10.16198/j.cnki.1009-640X.2019.03.010
    [3] 姚雷, 姚文娟.  高桩码头对邻近爆破的非线性动力响应分析 . 水利水运工程学报, 2018, (1): 66-72. doi: 10.16198/j.cnki.1009-640X.2018.01.010
    [4] 高树飞, 冯云芬, 贡金鑫.  基于等效单自由度模型的高桩码头地震位移需求分析 . 水利水运工程学报, 2018, (5): 30-40. doi: 10.16198/j.cnki.1009-640X.2018.05.005
    [5] 陈旭东, 李俊杰, 霍中艳.  高桩码头裂缝开合度监测模型研究 . 水利水运工程学报, 2017, (6): 53-59. doi: 10.16198/j.cnki.1009-640X.2017.06.008
    [6] 高树飞, 贡金鑫, 冯云芬.  国内外高桩码头抗震性能和设计方法研究进展Ⅲ:斜桩和桩-上部结构连接的抗震性能 . 水利水运工程学报, 2017, (2): 16-28. doi: 10.16198/j.cnki.1009-640X.2017.02.003
    [7] 高树飞, 贡金鑫, 冯云芬.  国内外高桩码头抗震性能和设计方法研究进展 . 水利水运工程学报, 2016, (6): 1-8.
    [8] 高树飞, 贡金鑫, 冯云芬.  基于规范反应谱的码头岸坡地震永久变形计算 . 水利水运工程学报, 2015, (3): 37-44.
    [9] 李瑜, 陈灿明, 黄卫兰, 王曦鹏.  桩基倾斜度对低应变反射波法割桩损伤的影响 . 水利水运工程学报, 2015, (6): 54-59.
    [10] 高树飞, 贡金鑫, 冯云芬.  高桩码头Pushover分析影响因素研究 . 水利水运工程学报, 2015, (5): 1-14.
    [11] 周元强, 白闰平, 邵 勤, 刘欣良.  碎石桩复合地基的液化判别方法 . 水利水运工程学报, 2014, (5): 87-94.
    [12] 韩石, 贡金鑫, 张艳青.  地震作用下重力式码头地基液化及变形 . 水利水运工程学报, 2013, (4): 45-54.
    [13] 卢陈,刘晓平,林积大,刘霞.  水平荷载下底梁式全直桩码头横向荷载传递规律 . 水利水运工程学报, 2012, (1): 43-48.
    [14] 李颖,贡金鑫.  有斜桩和无斜桩高桩码头地震反应的非线性有限元分析 . 水利水运工程学报, 2011, (2): -.
    [15] 陈生水,方绪顺,钱亚俊.  高土石坝地震安全评价及抗震设计思考 . 水利水运工程学报, 2011, (1): -.
    [16] 李颖,贡金鑫.  考虑桩土相互作用的高桩码头非线性地震反应分析 . 水利水运工程学报, 2010, (2): -.
    [17] 李颖,贡金鑫,吴澎.  高桩码头抗震性能的pushover分析 . 水利水运工程学报, 2010, (4): -.
    [18] 王年香.  被动桩与土体相互作用研究综述 . 水利水运工程学报, 2000, (3): 69-76.
    [19] 洪晓林,柏文正.  高桩码头结构研究综述 . 水利水运工程学报, 1995, (3): -.
    [20] 高明,靳道斌,沈任工,马梅英.  大型钢管桩水平静动载荷现场试验及桩土相互作用分析 . 水利水运工程学报, 1984, (1): -.
  • 加载中
图(13)
计量
  • 文章访问数:  1072
  • HTML全文浏览量:  48
  • PDF下载量:  690
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-16
  • 刊出日期:  2017-02-01

/

返回文章
返回