Model experimental studies of safety of moored ship under landslide surge action
-
摘要: 随着我国逐步加快在长江中上游山区河流的水利水电和港口航道工程建设,内河库港在滑坡涌浪作用下,如何保证船舶系泊安全成为一个极其关键的问题。为了提高滑坡涌浪对内河库港运行安全影响程度的认识,以江南沱口直立式高桩码头为依托,选择内河3 000 t甲板驳船为研究对象进行物理模型试验。深入分析了滑坡涌浪作用下系泊船舶系缆力和撞击能的影响因素,以及波高、水深等因素影响下系泊船舶系缆力和撞击能的变化规律。结合规范和试验数据,得出了涌浪作用下船舶系缆力和船舶撞击能的经验计算式,确定了滑坡涌浪对内河库港船舶系泊安全的影响程度,并提出了相应的对策和意见。Abstract: With a fast development of hydraulic engineering, the hydropower engineering and port waterway engineering in the middle-upper reaches of the Yangtze River, how to ensure the safety of the moored ships in the inland navigation ports under the action of landslide surge is an extremely important issue. In order to well understand the influence degrees of the landslide surge impacting the inland navigation ports, model test researches were carried out by taking 3 000 t deck barges moored in the Jiannan Tuokou port as a research object. On the basis of analyses and studies of the impact factors of the mooring force and the impact energy by the action of the landslide surge, the change law of the mooring force and the impact energy was found out from the surge wave height and water depth. According to the specifications and test data, the empirical formula for the mooring force and impact energy was given by a regression analysis. Ascertaining the influence degrees of the landslide surge impacting the inland navigation port, some countermeasures and suggestions were put forward for the port operation and management. The research results show that the findings have a high practical value and can be applied to the forecast and prevention of the landslide surge impacts on the navigation ports located at mountain rivers.
-
Key words:
- landslide surge /
- mooring line force /
- impact energy
-
表 1 船舶主尺度参数
Table 1. Parameters of moored ship sizes
船型参数 实船 船模 船长/m 90 1.28 型深/m 4 0.057 型宽/m 16 0.228 设计吃水/m 3.3 0.047 方形系数 0.8 0.8 满载排水量 3 000 t 8 700 g 表 2 典型涌浪参数工况
Table 2. Typical parameters of landslide surge
工况 入射波高/
cm对岸船舶
系缆力/kN对岸船舶
撞击能/kJ工况 入射周期/s 对岸船舶
系缆力/kN对岸船舶
撞击能/kJ工况 水深/m 对岸船舶
系缆力/kN对岸船舶
撞击能/kJ1 1.80 174.50 56.40 2 0.60 165.20 64.30 3 0.74 213.40 84.30 7 2.10 184.20 90.50 11 0.70 174.50 75.60 12 0.88 224.60 79.60 2 2.20 183.20 102.30 20 0.80 184.60 58.70 21 1.16 207.80 80.40 4 2.70 198.40 104.80 28 1.10 198.60 74.50 28 0.74 245.60 89.60 3 3.10 209.60 113.60 37 1.20 184.50 60.20 37 0.88 258.70 91.30 8 3.60 246.30 132.50 46 1.00 197.30 76.30 46 1.16 236.50 87.10 5 3.70 267.80 154.50 55 1.30 201.30 81.20 51 0.74 216.90 84.60 6 4.90 387.60 193.40 64 1.50 195.40 78.60 60 0.88 217.30 78.60 9 6.30 779.80 258.70 73 1.40 187.70 72.30 69 1.16 236.10 78.40 表 3 典型涌浪波高下船舶系缆力值
Table 3. Typical parameters of ship mooring force by action of landslide surge
工况 初始波高/m 入射波高/m 对岸码头船首系缆力/kN 对岸码头船尾系缆力/kN 同岸码头船首系缆力/kN 同岸码头船尾系缆力/kN 19 0.84 0.21 195.50 171.50 85.70 41.90 10 1.05 0.42 198.20 137.20 102.90 31.10 73 2.45 0.90 200.60 185.20 174.50 54.20 37 3.50 0.93 198.10 188.60 165.30 66.60 56 4.20 1.26 286.80 250.30 179.80 125.30 61 5.25 1.33 306.80 229.80 201.30 114.30 31 8.05 1.68 428.90 408.10 347.30 132.50 41 7.56 1.73 433.40 237.00 347.70 174.50 42 11.62 2.17 670.90 348.00 714.20 198.60 54 14.00 3.22 810.80 456.10 784.20 300.90 表 4 典型涌浪波高下船舶撞击能值
Table 4. Typical parameters of impact energy by action of landslide surge
工况 初始波高/m 入射波高/m 对岸码头船首撞击能/kJ 对岸码头船尾撞击能/kJ 同岸码头船首撞击能/kJ 同岸码头船尾撞击能/kJ 19 0.84 0.21 56.40 41.50 16.20 21.10 10 1.05 0.42 90.56 75.20 27.80 14.80 73 2.45 0.92 102.36 89.82 27.50 21.00 37 3.50 0.93 157.50 143.00 117.20 101.30 56 4.20 1.26 193.40 162.50 134.30 122.40 61 5.25 1.33 258.70 349.40 215.40 181.20 31 8.05 1.68 522.50 343.90 280.50 289.60 41 7.56 1.73 898.40 842.30 328.10 273.20 42 11.62 2.17 867.20 823.20 410.60 370.80 54 14.00 3.22 985.20 927.00 673.90 612.10 -
[1] 陈里, 喻涛, 王平义, 等.库区滑坡涌浪试验研究综述[J].人民长江, 2015, 46(7): 84-87. http://www.cnki.com.cn/Article/CJFDTOTAL-RIVE201507025.htm CHEN Li, YU Tao, WANG Pingyi, et al. Summary of experimental study on landslide-induced surge in reservoir area[J]. Yangtze River, 2015, 46(7): 84-87. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-RIVE201507025.htm [2] 路鼎, 王平义, 喻涛, 等.滑坡涌浪影响下船舶航行限制范围试验研究[J].水利水运工程学报, 2014(4): 70-74. http://slsygcxb.cnjournals.org/ch/reader/view_abstract.aspx?file_no=20140411&flag=1 LU Ding, WANG Pingyi, YU Tao, et al. Experimental studies of restricted waterway for ships during landslide generated waves[J]. Hydro-Science and Engineering, 2014(4): 70-74. (in Chinese) http://slsygcxb.cnjournals.org/ch/reader/view_abstract.aspx?file_no=20140411&flag=1 [3] SCHELLIN T E, OSTERGAARD C. The vessel in port: mooring problems[J]. Marine Structures, 1995(8):451-497. http://www.sciencedirect.com/science/article/pii/095183399597304Q [4] MIILLER M, CHARYPAR D, GROSS M. Particle-based fluid simulation for interactive applications[C]//Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 2003: 154-159. [5] SAKAKIBARA S, KUBO M. Characteristics of low-frequency motions of ships moored inside ports and harbors on the basis of field observations[J]. Marine Structures, 2008, 21: 196-223. doi: 10.1016/j.marstruc.2007.11.002 [6] SAKAKIBARA S, TAKEDA S, IWAMOTO Y, et a1. A hybrid potential theory for predicting the motions of a moored ship induced by large-scaled tsunami[J]. Ocean Engineering, 2010, 37(17): 1564-1575. http://www.sciencedirect.com/science/article/pii/S0029801810001927 [7] 孟祥玮, 高学平, 张文忠, 等.波浪作用下船舶系缆力的计算方法[J].天津大学学报, 2011, 44(7): 593-596. http://www.cnki.com.cn/Article/CJFDTOTAL-TJDX201107007.htm MENG Xiangwei, GAO Xueping, ZHANG Wenzhong, et al. A calculation method of mooring force induced by waves[J]. Journal of Tianjin University, 2011, 44(7): 593-596. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-TJDX201107007.htm [8] BLENDERMANN W. Estimation of wind loads on ships in wind with a strong gradient[J]. 14th Intl Conf on Offshore Mechanics & Arctic Engng, 1995. [9] 张日向, 刘忠波, 张宁川.系泊船在风浪流作用下系缆力和撞击力的试验研究[J].中国海洋平台, 2003, 18(1): 28-32. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGHY200301007.htm ZHANG Rixiang, LIU Zhongbo, ZHANG Ningchuan. An experimental study on the mooring line forces and impact forces of a moored ship under the combined action of wind, wave and current[J]. China Offshore Platform, 2003, 18(1): 28-32. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-ZGHY200301007.htm [10] 李焱, 郑宝友, 高峰, 等.浪流作用下系泊船舶撞击力和系缆力试验研究[J].海洋工程, 2007, 25(2): 57-63. http://www.cnki.com.cn/Article/CJFDTOTAL-HYGC200702008.htm LI Yan, ZHENG Baoyou, GAO Feng, et al. Model test study on the impact forces and mooring line forces of a moored ship under the combined action of wave and current[J]. The Ocean Engineering, 2007, 25(2): 57-63. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-HYGC200702008.htm [11] 陈里. 山区河道型水库岩体滑坡涌浪特性及对航道的影响试验研究[D]. 重庆: 重庆交通大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10618-1015328925.htm CHEN Li. Experimental study on characteristics of rock-type landslide surge and impact for navigable conditions of the river-channel type reservoir in mountainous area[D]. Chongqing: Chongqing Jiaotong University, 2014. (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10618-1015328925.htm [12] 吴秀恒.船舶操纵性与耐波性[M].北京:人民交通出版社, 1999. WU Xiuheng. Ship maneuverability and seakeeping[M]. Beijing: China Communications Press, 1999. (in Chinese) [13] JTJ 215—1998港口工程荷载规范[S]. JTJ 215—1998 Load code for harbor engineering[S]. (in Chinese) [14] JTS 144-1—2010港口工程荷载规范[S]. JTS 144-1—2010 Load code for harbor engineering[S]. (in Chinese) -