Numerical simulation of regular wave transmission coefficient over submerged breakwater
-
摘要: 潜堤透浪系数是衡量潜堤削弱波浪能力的主要指标。基于Boussinesq型方程的MIKE21-BW模型建立波浪数值水槽,进行规则波作用下潜堤透浪系数的数值模拟。根据Dingemans物理模型试验结果对BW模型进行参数率定和验证,验证结果良好。在此基础上,进一步分析了影响潜堤透浪系数的无因次影响参数,包含相对淹没深度、波陡、相对堤顶宽度、斜坡堤坡度等,研究不同因素组合情况下潜堤透浪系数的变化规律。建立了规则波作用下潜堤透浪系数的计算式,应用MATLAB数学软件对式中的系数进行拟合,拟合式计算值与BW模型计算值相关系数为0.858,相关性较好。另外,将拟合式与杨正己公式进行比较,并分析数据的差异与原因。研究表明:MIKE21-BW模型可以进行规则波作用下潜堤透浪系数的数值模拟。
-
关键词:
- 潜堤 /
- 透浪系数 /
- MIKE21-BW模型 /
- 规则波 /
- 数值模拟
Abstract: Wave transmission coefficient over a submerged breakwater is the main index to measure the wave weakened capacity of the submerged breakwater. A numerical wave flume is established by the MIKE21-BW model based on Boussinesq-type equations, and a numerical simulation of the regular wave transmission coefficient over the submerged breakwater is made in this article. According to the results of Dingemans physical model tests, the parameter calibration and verification of the BW model are carried out, and the results are satisfactory. On the basis of these results, further analyses of the dimensionless parameters influncing the submerged breakwater wave transmission coefficient, including relative submerged water depth, wave steepness, relative crest width of the submerged breakwater, submerged breakwater slope, are made. And the change law of different combined factors of the submerged breakwater wave transmission coefficient is studied. The form of a calculation formula for the regular wave transmission coefficient over the submerged breakwater is put forward, and MATLAB mathematical software is used to fit the coefficient of the formula. The correlation coefficient between the calculated value of the fitting formula and the calculated value of the BW model is 0.858, a good correlation between the two values. In addition, the difference and relevant reasons of the data between the fitting formula and Yang Zhengji's formula are compared and analyzed. The analysis results show that the MIKE21-BW model can be applied to the numerical simulation of the submerged breakwater wave transmission coefficient under the action of the regular wave. The results given by this article can provide a reference for the numerical simulation of the submerged breakwater works. -
表 1 规则波作用下模型计算波浪要素
Table 1. Wave elements under action of regular waves
水深d/
cm周期T/
s波长L/
m30 1.06 1.5 1.32 2.0 1.58 2.5 1.86 3.0 35 1.03 1.5 1.27 2.0 1.51 2.5 1.75 3.0 40 1.02 1.5 1.23 2.0 1.45 2.5 1.68 3.0 45 1.01 1.5 1.21 2.0 1.42 2.5 1.63 3.0 -
[1] 杨正己, 贺辉华, 潘少华.波浪作用下抛石堤的稳定性及消浪特性[J].水利水运科学研究, 1981(3): 34-45. http://www.cnki.com.cn/Article/CJFDTOTAL-SLSY198103002.htm YANG Zhengji, HE Huihua, PAN Shaohua. Stability and wave dissipation characteristics of rubble-mound breakwater under wave action[J]. Journal of Nanjing Hydraulic Research Institute, 1981(3): 34-45. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-SLSY198103002.htm [2] VAN DER MEER J W. Data on wave transmission due to overtopping[R]. Marknesse, The Netherlands: Delft Hydraulics, 1990. [3] 邹红霞, 陈国平.不规则波作用下潜堤透射系数的计算方法及统计分布[J].水运工程, 2010(3): 11-16. http://www.cnki.com.cn/Article/CJFDTOTAL-SYGC201003004.htm ZOU Hongxia, CHEN Guoping. Analyses of irregular wave of transmission coefficient calculation method and distribution though a submerged breakwater[J]. Port & Waterway Engineering, 2010(3): 11-16. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-SYGC201003004.htm [4] 冯卫兵, 王明明, 崔川川.潜堤透浪系数的试验研究[J].水运工程, 2012(9): 1-6. http://www.cnki.com.cn/Article/CJFDTOTAL-SYGC201209004.htm FENG Weibing, WANG Mingming, CUI Chuanchuan. Experimental study of wave transmission coefficient over a submerged breakwater[J]. Port & Waterway Engineering, 2012(9): 1-6. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-SYGC201209004.htm [5] 张娜, 张文忠, 曲淑媛. 潜堤及透浪式建筑物的平面二维波浪数值模拟[C]//第十四届中国海洋(岸)工程学术讨论会论文集, 2009: 676-679. ZHANG Na, ZHANG Wenzhong, QU Shuyuan. Two-dimensional wave numerical simulation of the submerged breakwater and permeable works[C]//The Fourteenth Chinese Marine (Coastal) Engineering Symposium, 2009: 676-679. (in Chinese) [6] 江鸣. 波浪通过系列矩形潜堤的数值模拟[D]. 天津: 天津大学, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10056-1012023724.htm JIANG Ming. Numerical simulation of wave propagation over a series of submerged rectangular dikes[D]. Tianjin: Tianjin University, 2011. (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10056-1012023724.htm [7] 贾晓, 张峰, 邵燕华.透浪建筑物掩护水域波浪数值模拟研究[J].水运工程, 2013(11): 153-158. http://www.cnki.com.cn/Article/CJFDTOTAL-SYGC201311034.htm JIA Xiao, ZHANG Feng, SHAO Yanhua. Wave numerical simulation about waters sheltered by permeable hydraulic structures[J]. Port & Waterway Engineering, 2013(11): 153-158. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-SYGC201311034.htm [8] 季小强.基于扩展型双曲缓坡方程波浪传播模型[J].海洋工程, 2010, 28(3): 59-67. http://www.cnki.com.cn/Article/CJFDTOTAL-HYGC201003010.htm JI Xiaoqiang. A wave transmission model based on the extended hyperbolic mild slope equation[J]. The Ocean Engineering, 2010, 28(3): 59-67. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-HYGC201003010.htm [9] 王红川, 周正萍.基于改进缓坡方程的波浪传播数值模拟[J].海洋工程, 2013, 31(3): 45-53. http://www.cnki.com.cn/Article/CJFDTOTAL-HYGC201303007.htm WANG Hongchuan, ZHOU Zhengping. Numerical simulation of wave propagation by modified mild-slope equation[J]. The Ocean Engineering, 2013, 31(3): 45-53. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-HYGC201303007.htm [10] 李雪, 董胜, 陈更.港池泊稳的能量平衡方程数值模拟[J].中国海洋大学学报, 2014, 44(7): 100-106. http://www.cnki.com.cn/Article/CJFDTOTAL-QDHY201407016.htm LI Xue, DONG Sheng, CHEN Geng. Numerical simulation of energy balance equation of the harbor basin berthing stability[J]. Journal of Ocean University of China, 2014, 44(7): 100-106. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-QDHY201407016.htm [11] 冯春明, 董胜, 吉星明.基于能量平衡方程的多向随机波数学模型的研究与改进[J].海洋湖沼通报, 2013(4): 181-188. http://www.cnki.com.cn/Article/CJFDTOTAL-HYFB201304025.htm FENG Chunming, DONG Sheng, JI Xingming. Research and improve for multi-directional random wave mathematical model based on energy-balance-equation[J]. Transaction of Oceanology and Limnology, 2013(4): 181-188. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-HYFB201304025.htm [12] 邹华志.近岸波浪的Boussinesq型方程模拟及其应用[J].广东水利水电, 2009(4): 1-5. http://www.cnki.com.cn/Article/CJFDTOTAL-GDSD200904003.htm ZOU Huazhi. Numerical simulation of coastal waves using Boussinesq-type equations and its application[J]. Guangdong Water Resources and Hydropower, 2009(4): 1-5. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-GDSD200904003.htm [13] 冯卫兵, 邵东, 王明明, 等.高阶非线性完全频散性波浪数值模型及应用[J].海洋工程, 2015(1): 49-57. http://cdmd.cnki.com.cn/Article/CDMD-10248-2007052709.htm FENG Weibing, SHAO Dong, WANG Mingming, et al. The numerical application of a higer-order nonlinear and fully dispersive wave model[J]. The Ocean Engineering, 2015(1): 49-57. (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10248-2007052709.htm [14] 李鹏. 波浪在潜堤上传播和破碎[D]. 南京: 南京水利科学研究院, 2005. http://cdmd.cnki.com.cn/Article/CDMD-82306-2006012882.htm LI Peng. Wave propagation and breaking on submerged breakwater[D]. Nanjing: Nanjing Hydraulic Research Institute, 2005. (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-82306-2006012882.htm -