Synthesis and properties of low-energy consumption and high slump retaining type of polycarboxylate superplasticizer
-
摘要: 合成工艺的低能耗是减水剂绿色制备的一个重要发展方向,研制高保坍型聚羧酸系减水剂解决现代混凝土施工中面临的坍落度损失控制难题具有重要实践意义。采用复合氧化-还原体系,在20 ℃条件下,以异戊烯醇聚氧乙烯醚、丙烯酸丁酯、丙烯酸羟乙酯和丙烯酸为共聚单体,一步法合成了高保坍型聚羧酸系减水剂。通过单因素试验和正交试验研究了丙烯酸丁酯、丙烯酸羟乙酯、链转移剂、还原剂、氧化剂用量对聚合物分散性和保坍性的影响规律,得到了最佳合成工艺为:丙烯酸丁酯与丙烯酸羟乙酯等摩尔取代丙烯酸的用量为30%,链转移剂用量为0.25%,还原剂用量为0.22%,氧化剂用量为0.30%(占聚醚大单体质量),反应时间为4 h。与国外同类产品相比,按最佳合成工艺参数制备的保坍剂具有显著的小坍度保持能力和较低的掺量敏感性,特别适用于小坍落度高保坍要求的混凝土施工。Abstract: The synthesis process with low-energy consumption is an important developing direction for green synthesis of the water reducing agent. Developing a high slump retaining type of polycarboxylate superplasticizer has an important practical significance in solving the problems of the slump loss control in the modern concrete construction. A compound redox system was used to synthesize the high slump retaining type of polycarboxylate superplasticizer with one step method at 20 ℃, by using the isopentenol polyoxyethylene ether, butyl acrylate, hydroxyethyl acrylate and acrylic acid as a comonomer. The effects of the butyl acrylate, hydroxyethyl acrylate, chain transfer agent, reducdant and oxidant on the dispersing ability and slump retaining ability of the superplasticizer were studied by a single factor and orthogonal tests. The optimum synthetic process parameters are as follows: the equimolar substitution amount of acrylic acid replaced by the butyl acrylate and hydroxyethyl acrylate is 30%, the usage of the chain transfer agent, reductant and oxidant is 0.25%, 0.22%, 0.33% respectively (with the mass ratio of the isopentenol polyoxyethylene ether), and the reaction time is 4 hours. Compared with foreign similar products, the test results show that the developed superplasticizer has a small slump retention ability and lower dosage sensitivity, which is especially suitable for the low-slump concrete needing high slump retaining ability.
-
表 1 酸醚摩尔比对减水剂分散性能和保坍性能的影响
Table 1. Effects of mole ratio of acid to ether on dispersion ability and slump retaining ability of superplasticizer
编号 $n\left( {\frac{{{\rm{AA}}}}{{{\rm{TPEG}}}}} \right) $ 净浆流动度/mm 基准水泥 鹤林水泥 SL0 SL1h SL0 SL1h 1 3.0 180 110 175 150 2 3.5 210 120 195 162 3 4.0 215 110 196 155 4 4.5 190 95 180 130 注:W/B为0.29;减水剂固体掺量为0.20%。 表 2 聚合温度对减水剂分散性能和保坍性能的影响
Table 2. Effect of polymerization temperature on dispersion ability and slump retaining ability of superplasticizer
编号 $n\left( {\frac{{{\rm{AA}}}}{{{\rm{TPEG}}}}} \right) $ 净浆流动度/mm 基准水泥 鹤林水泥 SL0 SL1h SL0 SL1h 1 10 242 111 225 149 2 20 210 120 195 162 3 30 215 118 192 163 注:W/B为0.29;减水剂固体掺量为0.20%。 表 3 合成工艺参数与水泥净浆流动度试验结果
Table 3. Synthesis parameters and results of cement paste fluidity tests
编号 合成工艺参数 净浆流动度/mm AA 不饱和酸酯 基准水泥 鹤林水泥 SL0 SL1h SL2h SL0 SL1h SL2h 1 3.50 0 210 120 - 195 162 85 2 3.15 0.35 214 150 82 198 185 100 3 2.80 0.70 218 154 119 206 200 150 4 2.45 1.05 248 245 177 207 248 228 5 2.10 1.40 105 141 90 156 255 265 6 1.75 1.75 - 100 70 112 232 257 注:合成工艺参数中原料比均为摩尔比,聚醚大单体TPEG为1;合成温度为20 ℃;W/B为0.29;减水剂固体掺量为0.20%;“-”表示无净浆流动度。 表 4 正交试验因素水平
Table 4. Factors and levels of orthogonal tests
水平 因素 A B C 1 0.13 0.25 0.20 2 0.16 0.30 0.25 3 0.19 0.35 0.30 4 0.22 0.40 0.35 注:A, B, C为聚醚大单体的质量百分比。 表 5 净浆流动度试验结果
Table 5. Results of cement paste fluidity tests
编号 净浆流动度/mm 鹤林水泥 海螺水泥 基准水泥 SL0 SL1h SL2h SL3h SL0 SL1h SL2h SL3h SL0 SL1h SL2h SL3h 1 222 240 229 151 85 106 90 70 155 201 188 140 2 270 278 265 235 85 118 117 77 158 212 207 181 3 70 165 135 75 68 65 65 65 80 85 72 65 4 95 195 182 140 68 65 65 65 78 99 75 65 5 163 221 208 168 70 65 65 65 95 118 77 65 6 147 200 197 149 67 65 65 65 90 128 77 65 7 185 244 235 200 70 65 65 65 85 115 75 65 8 108 158 139 77 67 65 65 65 80 75 65 65 9 166 218 215 135 68 65 65 65 80 79 65 65 10 157 222 216 140 67 65 65 65 80 82 65 65 11 140 215 227 164 66 65 65 65 78 75 65 65 12 177 250 251 205 70 65 65 65 88 100 75 65 13 85 175 165 110 66 65 65 65 85 88 65 65 14 215 255 242 212 70 65 65 65 89 104 76 65 15 216 265 246 223 86 102 88 70 150 192 177 130 16 240 288 275 258 87 119 117 79 158 202 190 150 注:W/B为0.29,减水剂固体掺量0.20%。 表 6 不同经时的水泥净浆流动度测试结果
Table 6. Results of cement paste fluidity of different hydration time tests
编号 保坍剂 固体掺量/% SL0 SL1h SL2h SL3h 1 BTA 0.10 80 129 127 112 2 SRA 60 75 70 70 3 BTA 0.15 90 168 171 154 4 SRA 70 104 105 110 5 BTA 0.10 154 135 141 114 6 SRA 60 70 65 65 7 BTA 0.15 182 198 203 185 8 SRA 92 133 145 141 注:W/B为0.29;编号1~4组采用海螺水泥,5~8组采用鹤林水泥。 表 7 混凝土拌合物性能比较结果
Table 7. Comparison results of concrete mixture properties
编号 配合比/(kg·m-3) W/B 保坍剂 坍落度/mm 水泥 砂 碎石/mm 水 SL0 SL1h SL2h SL3h 10~20 5~10 1 360 785 651 434 150 0.417 BAT 110 55 38 无 2 SRA 40 35 35 25 3 500 750 746 324 150 0.30 BAT 85 40 20 无 4 SRA 45 45 48 30 注:编号1~2组采用海螺水泥,3~4组采用鹤林水泥。 -
[1] 李崇智, 冯乃谦, 牛全林.聚羧酸系减水剂结构模型与高性能化分子设计[J].建筑材料学报, 2004, 7(2): 194-201. http://www.cnki.com.cn/Article/CJFDTOTAL-JZCX200402013.htm LI Chongzhi, FENG Naiqian, NIU Quanlin. Model for molecular structure of polycarboxylic acid type water-reducer and its high performance designing[J]. Journal of Building Materials, 2004, 7(2): 194-201. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-JZCX200402013.htm [2] 卞荣兵, 沈健.聚羧酸混凝土高效减水剂的合成和研究现状[J].精细化工, 2006, 23(2): 179-182. http://youxian.cnki.com.cn/yxdetail.aspx?filename=YNJC20171012003&dbname=CAPJ2015 BIAN Rongbing, SHEN Jian. Review of polycarboxylate superplasticizer synthetic methods and research[J]. Fine Chemicals, 2006, 23(2): 179-182. (in Chinese) http://youxian.cnki.com.cn/yxdetail.aspx?filename=YNJC20171012003&dbname=CAPJ2015 [3] YAMADA K, TAKHASHI T, HANEHARA S. Effects of the chemical structure on the properties of polycarboxylate-type superplasticizer[J]. Cement and Concrete Research, 2000, 30(1): 197-207. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGCZ201105001234.htm [4] YOSHIOKA K, TAZAWA E, KAWAI K, et al. Adsorption characteristics of water-reducers on cement component minerals[J]. Cement and Concrete Research, 2002, 32(11): 1507-1513. [5] PLANK J, HIRSCH C. Impact of zeta potential of early cement hydration phases on superplasticizer adsorption[J]. Cement and Concrete Research, 2007, 37: 537-542. doi: 10.1016/j.cemconres.2007.01.007 [6] 张代立.新型聚羧酸保坍剂的研制[J].混凝土, 2015(12): 148-150. doi: 10.3969/j.issn.1002-3550.2015.12.039 ZHANG Daili. Development of a new polycarboxylic slumpretaining agent[J]. Concrete, 2015(12): 148-150. (in Chinese) doi: 10.3969/j.issn.1002-3550.2015.12.039 [7] 陈亚萍, 徐征宇, 陈斐.缓释高保坍型聚羧酸减水剂的制备及其性能研究[J].新型建筑材料, 2015, 42(9): 8-11. http://www.cnki.com.cn/Article/CJFDTOTAL-XXJZ201509003.htm CHEN Yaping, XU Zhengyu, CHEN Fei. Research on synthesis and performance of a slowly-released and highly slump retaining type of polycarboxylate superplasticizer[J]. New Building Materials, 2015, 42(9): 8-11. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-XXJZ201509003.htm [8] 王虎群, 杨晓峰, 熊卫锋.一种交联型聚羧酸减水剂的性能研究[J].新型建筑材料, 2015, 42(11): 37-40. doi: 10.3969/j.issn.1001-702X.2015.11.011 WANG Huqun, YANG Xiaofeng, XIONG Weifeng. Study on the performance of a kind of cross linked polycarboxylate superplasticizer[J]. New Building Materials, 2015, 42(11): 37-40. (in Chinese) doi: 10.3969/j.issn.1001-702X.2015.11.011 [9] 高瑞军, 王玲, 高春勇, 等.疏水烷基酯侧链对聚羧酸系减水剂分散及保坍性能的影响[J].功能材料, 2014, 45(13): 13148-13151. doi: 10.3969/j.issn.1001-9731.2014.13.032 GAO Ruijun, WANG Ling, GAO Chunyong, et al. Effect of hydrophobic alkyl ester side chain on the dispersion and slump retention properties of polycarboxylate superplasticizer[J]. Journal of Function Materials, 2014, 45(13): 13148-13151. (in Chinese) doi: 10.3969/j.issn.1001-9731.2014.13.032 [10] 王子明, 李慧群.聚羧酸系减水剂研究与应用新进展[J].混凝土世界, 2012, 38(8): 50-56. http://www.cnki.com.cn/Article/CJFDTOTAL-JZSJ201208009.htm WANG Ziming, LI Huiqun. Progress of polycarboxylate superplasticizer research and application[J]. China Concrete, 2012, 38(8): 50-56. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-JZSJ201208009.htm [11] 陈国新, 祝烨然, 沈燕平, 等.保坍型聚羧酸系减水剂的常温合成及性能研究[J].混凝土, 2014(5): 68-69. http://www.cnki.com.cn/Article/CJFDTOTAL-HLTF201405021.htm CHEN Guoxin, ZHU Yeran, SHEN Yanping, et al. Study on synthesis at room temperature and performance of slump retention polycarboxylate superplasticizer[J]. Concrete, 2014(5): 68-69. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-HLTF201405021.htm [12] 孙振平, 黄雄荣.烯丙基聚乙二醇系聚羧酸类减水剂的研究[J].建筑材料学报, 2009, 12(4): 407-411. http://www.cnki.com.cn/Article/CJFDTOTAL-JZCX200904009.htm SUN Zhenping, HUANG Xiongrong. Study on allyl polyethylene glycol based polycarboxylate superplasticizer[J]. Journal of Building Materials, 2009, 12(4): 407-411. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-JZCX200904009.htm [13] 胡建华, 汪长春, 杨武利, 等.聚羧酸系高效减水剂的合成与分散机理研究[J].复旦学报(自然科学版), 2000, 39(4): 463-466. http://youxian.cnki.com.cn/yxdetail.aspx?filename=YNJC20171012003&dbname=CAPJ2015 HU Jianhua, WANG Changchun, YANG Wuli, et al. Synthesis and mechanism of poly (carboxylate) high-range water reducing agent[J]. Journal of Fudan University(Natural Science), 2000, 39(4): 463-466. (in Chinese) http://youxian.cnki.com.cn/yxdetail.aspx?filename=YNJC20171012003&dbname=CAPJ2015 -