Influences of different curing methods on cement-lithium slag slurry hydration degree
-
摘要: 为了分析水泥-锂渣浆体的水化程度, 采用高温煅烧法测试各龄期的化学结合水, 结果发现:水泥-锂渣浆体的化学结合水量随龄期的延长而增加, 水化3 d和7 d时能达到水化90 d时的60%和80%。高温养护、碱激发、高温和碱激发均能提高锂渣复合水泥基材料早期的化学结合水量, 最高可达3~4倍, 提高的幅度依次为碱激发和高温养护>碱激发>高温养护>标准养护。高温和复合环境养护也能提高水泥的水化程度, 1~28 d内, 锂渣掺量在40%以内时, 水泥水化程度相对指数(ψ值)均大于1;掺量为60%时, ψ值均小于1。综上, 高温养护、碱激发、高温和碱激发均能提高锂渣和水泥的水化程度, 高温和碱激发复合作用时较为显著。Abstract: In order to analyze the hydration degree of the cement-lithium slag slurry, the chemically combined water is tested by high-temperature calcination at different ages. The testing results show that the chemically combined water of the cement-lithium slag slurry increases with prolongation of the age that can be able to achieve more than 60% and 80% for 90 d at 3 d and 7 d hydration degree, after then this increase becomes slower. The chemically combined water at 1 d is up to 3 to 4 times under the conditions of high temperature curing, alkali activation, high temperature and alkali activation (composite curing), which is better than standard curing. Relatively speaking, the effect of the 4 kinds of curing is in the order of composite curing >alkali activation> high temperature curing>standard curing. The chemically combined water of unit cement at 1~28 d is small by an equivalent chemically combined water method, the relative index (ψ value) of the cement hydration degree at 1~28 d is greater than 1 when the content of the lithium slag is less than 40%, and ψ value is less than 1 when the content of the lithium slag is 60% under high temperature curing and composite curing. In summary, the hydration degree of the cement and lithium slag can be improved by high temperature curing, alkali-activation and composite curing, and it is more significant in the composite curing period.
-
Key words:
- curing method /
- cement /
- lithium slag /
- hydration degree
-
表 1 基准水泥和锂渣化学成分
Table 1. Chemical composition of cement and lithium slag
% 样品名称 Loss SiO2 Al2O3 Fe2O3 CaO MgO SO3 Na2Oeq 基准水泥 2.18 25.10 6.38 4.19 54.87 2.61 2.66 0.56 锂渣 7.01 58.54 19.34 1.44 7.34 0.73 6.28 0.43 注:Na2Oeq=Na2O+0.658K2O 表 2 锂渣复合水泥基材料配合比
Table 2. Mix proportion of lithium slag composite binder
试样编号 水胶比 锂渣复合水泥基材料的组成/% 基准水泥 锂渣 LB0 100 0 LB1 0.40 80 20 LB2 60 40 LB3 40 60 LD0 100 0 LD1 0.30 80 20 LD2 60 40 LD3 40 60 注:标准养护时编号为LB0~LB3和LD0~LD3;高温(50 ℃和100 ℃)养护时,在LB1~LB3和LD1~LD3后加上“5”和“10”;碱激发时,在LB1~LB3和LD1~LD3后加上“p”;复合激发时,在LB1~LB3和LD1~LD3后加上“5p”。下同。 -
[1] WU Fufei, SHI Kebin, DONG Shuangkuai. Influence of concrete with lithium-slag and steel slag by early curing conditions[J]. Key Engineering Materials, 2014, 599: 52-55. doi: 10.4028/www.scientific.net/KEM.599 [2] 张兰芳.高性能锂渣混凝土的试验研究[J].辽宁工程技术大学学报, 2007, 26(6): 877-880. http://www.cnki.com.cn/Article/CJFDTOTAL-ZNSD201303037.htm ZHANG Lanfang. Experiment study on high-performance lithium-slag concrete[J]. Journal of Liaoning Technical University, 2007, 26(6): 877-880. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-ZNSD201303037.htm [3] 吴福飞, 侍克斌, 董双快, 等.掺合料和水胶比对水泥基材料水化产物和力学性能的影响[J].农业工程学报, 2016, 32(4): 119-126. doi: 10.11975/j.issn.1002-6819.2016.04.017 WU Fufei, SHI Kebin, DONG Shuangkuai, et al. Influence of admixture and water-cement ratio on hydration products and mechanical properties of cement-based materials[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(4): 119-126. (in Chinese) doi: 10.11975/j.issn.1002-6819.2016.04.017 [4] 吴福飞, 董双快, 宫经伟, 等.含掺合料胶凝材料水化产物体积分数计算及其影响因素[J].农业工程学报, 2016, 32(3): 48-54. doi: 10.11975/j.issn.1002-6819.2016.03.008 WU Fufei, DONG Shuangkuai, GONG Jingwei, et al. Calculation of concrete with mineral admixture hydration products volume fraction and its influential factors[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(3): 48-54. (in Chinese) doi: 10.11975/j.issn.1002-6819.2016.03.008 [5] 张善德. 锂渣高性能混凝土强度预测及圆环法早期抗裂性试验研究[D]. 乌鲁木齐: 新疆农业大学, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10758-1011176055.htm ZHANG Shande. Forecasting of lithium-slag high-performance concrete strength and ring method test on its early-age anti-crack capability[D]. Urumqi: Xinjiang Agricultural University, 2011. (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10758-1011176055.htm [6] 史才军.碱-激发水泥和混凝土[M].北京:化学工业出版社, 2008: 38-43. SHI Caijun. Alkali activated cement concrete[M]. Beijing: Chemistry Industry Press, 2008: 38-43. (in Chinese) [7] 阎培渝, 王强.高温养护对钢渣复合胶凝材料早期水化性能的影响[J].清华大学学报(自然科学版), 2009, 49(6): 790-793. http://www.cnki.com.cn/Article/CJFDTOTAL-QHXW200906004.htm YAN Peiyu, WANG Qiang. Effect of high temperature curing on the early hydration characteristics of a complex binder containing steel slag[J]. J Tsinghua Univ(Sci & Tech), 2009, 49(6): 790-793. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-QHXW200906004.htm [8] LIU Rengguang, DING Shidong, YAN Peiyu. The microstructure of hardened Portland cement-slag complex binder pastes cured under two different curing conditions[J]. Journal of the Chinese Ceramic Society, 2015, 43(5): 610-618. [9] POON C S, QIAO X C, LIN Z S. Pozzolanic properties of reject fly ash in blended cement pastes[J]. Cem Concr Res, 2003(33): 1857-1865. http://trid.trb.org/view.aspx?id=746874 [10] GUIRADO F, GALI S, CHINCHON S. Quantitative rietveld analysis of aluminous cement clinker phases[J]. Cem Concr Res, 2000(30): 1023-1029. [11] ANGELES G, RUTH N, ANTONIO J M, et al. Crystal structure of low magnesium-content alite: application to rietveld quantitative phase analysis[J]. Cem Concr Res, 2008(38): 1261-1269. [12] 李响. 复合水泥基材料水化性能与浆体微观结构稳定性[D]. 北京: 清华大学, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10003-1012006494.htm LI Xiang. Hydration performance and microstructural stability of complex cementitious materials[D]. Beijing: Tsinghua University, 2010. (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10003-1012006494.htm [13] 王强. 钢渣的胶凝性能及在复合胶凝材料水化硬化过程中的作用[D]. 北京: 清华大学, 2010. WANG Qiang. Cementitious properties of steel slag and its role in the hydration and hardening process of complex binder[D]. Beijing: Tsinghua University, 2010. (in Chinese) [14] 白建飞, 李海桥, 李军全, 等. 锂渣粉在抹灰砂浆中的水化机理研究[C]//商品砂浆的科学与技术(第三部分固体废弃物资源化利用), 2009(9): 239-243. BAI Jianfei, LI Haiqiao, LI Junquan, et al. Researeh on hydration mechanism of plasterer mortar with lithium residue power[C]//Science and Technical of Mortar (Third Part: Resource Utilize of Solid Waste), 2009(9): 239-243. (in Chinese) -