Dynamic properties of concrete under different initial pore water pressure
-
摘要: 为研究不同初始孔隙水压力下混凝土动态力学特性, 利用10 MN大型多功能液压伺服静动力三轴仪进行不同初始孔隙水压与不同加载速率下的混凝土常三轴试验。结果表明:不同围压下, 混凝土内部孔隙水压的变化规律可分为迅速变化、缓慢变化和趋于稳定3个阶段。不同应变速率下, 混凝土峰值应力随初始孔隙水压的增大逐渐增大, 高应变速率提高了初始孔隙水压力对混凝土峰值应力的影响; 初始孔隙水压力在较大程度上提高了混凝土峰值应力的率敏感性。不同初始孔隙水压力下, 混凝土峰值应力随应变速率的提高逐渐增加。依据试验数据, 基于Weibull统计理论模型构建了混凝土水环境下的经验率型本构方程, 对不同初始孔隙水压下混凝土常三轴动态压缩应力-应变曲线进行描述, 拟合效果良好。这证明所建模型可用来描述不同工况下混凝土应力-应变全曲线及损伤变化规律。Abstract: The concrete samples under different initial pore water pressures were tested with different strain rates by a 10 MN large multifunctional hydraulic servo static and dynamic triaxial test equipment. The testing results show that: under confining pressure, changes of internal pore-water pressure can be divided into three phases: rapid, slow and stabilizing phases. Under the conditions of different strain rates, the peak stress of concrete increases gradually along with the increase of the initial pore water pressure and a high strain rate improves the influence of the initial pore water pressures on the peak stress of concrete; and under different initial pore water pressures, the peak stress of concrete increases with the increase of the strain rate. According to the testing data, based on Weibull statistical theory, a rate-dependent constitutive model for concrete is developed. The stress-strain curves of concrete with different pore water pressures under the confining water pressure are described by the model established, and the fitting results are good. The model can be used to describe the stress-strain curves and the damage of concrete under different working conditions.
-
Key words:
- concrete /
- dynamic performance /
- pore water pressure /
- rate-dependent constitutive model
-
表 1 不同初始孔隙水压下混凝土峰值应力
Table 1. Peak stress values of concrete under different initial pore water pressures
MPa 初始孔隙水压力/MPa 不同应变速率下峰值应力 10-2/s 10-3/s 10-4/s 10-5/s 自然状态(无水) 38.73 36.12 31.31 28.87 0 35.96 28.32 27.64 25.80 2 50.19 38.71 32.72 26.99 5 61.47 52.56 35.00 28.16 10 66.20 54.22 39.56 33.61 表 2 不同初始孔隙水压下混凝土峰值应力变化率
Table 2. Change rates of peak stress of concrete under different initial pore water pressures
初始孔隙水压力/MPa 不同应变速率下峰值应力变化率/% 10-2/s 10-3/s 10-4/s 10-5/s 0 0 0 0 0 2 38.00 36.69 18.38 4.61 5 70.94 85.59 26.63 9.15 10 84.09 91.45 43.13 30.27 表 3 不同应变速率下混凝土峰值应力变化率
Table 3. Change rates of peak stress of concrete under different strain rates
初始孔隙水压力/MPa 不同应变速率下峰值应力变化率/% 10-2/s 10-3/s 10-4/s 10-5/s 0 39.38 9.77 7.13 0 2 85.96 43.42 21.23 0 5 118.29 86.65 24.29 0 10 96.97 61.32 17.70 0 -
[1] BUTLER J E. The influence of pore pressure upon concrete[J]. Magazine of Concrete Research, 1981, 33(114): 3-17. doi: 10.1680/macr.1981.33.114.3 [2] CADONI E, LABIBES K, ALBERTINI C, et al. Strain-rate effect on the tensile behaviour of concrete at different relative humidity levels[J]. Materials and Structures, 2001, 34(1): 21-26. doi: 10.1007/BF02482196 [3] YAMAN I O, HEARN N, AKTAN H M. Active and non-active porosity in concrete Part I: experimental evidence[J]. Materials and Structures, 2002, 35(2): 110-116. doi: 10.1007/BF02482110 [4] 王海龙, 李庆斌.孔隙水对湿态混凝土抗压强度的影响[J].工程力学, 2006, 23(10): 141-144. doi: 10.3969/j.issn.1000-4750.2006.10.027 WANG Hailong, LI Qingbin. Effect of pore water on the compressive strength of wet concrete[J]. Engineering Mechanics, 2006, 23(10): 141-144. (in Chinese) doi: 10.3969/j.issn.1000-4750.2006.10.027 [5] 杜修力, 金浏.细观均匀化方法预测非饱和混凝土宏观力学性质[J].水利学报, 2013, 44(11): 1317-1325. http://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201311009.htm DU Xiuli, JIN Liu. Micro-scale homogenization for prediction of the macroscopic mechanical properties of unsaturated concrete[J]. Journal of Hydraulic Engineering, 2013, 44(11): 1317-1325. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201311009.htm [6] 李宗利, 杜守来.高渗透孔隙水压对混凝土力学性能的影响实验研究[J].工程力学, 2011, 28(11): 72-77. http://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201111014.htm LI Zongli, DU Shoulai. Experimental study on mechanical properties of concrete due to high seepage pore water pressure[J]. Engineering Mechanics, 2011, 28(11):72-77. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201111014.htm [7] 张永亮, 朱大勇, 李永池, 等.干燥和饱和混凝土动态力学特性及其机理[J].爆炸与冲击, 2015, 35(6): 864-869. doi: 10.11883/1001-1455(2015)06-0864-07 ZHANG Yongliang, ZHU Dayong, LI Yongchi, et al. Dynamic mechanical properties of dry and saturated concretes and their mechanism[J]. Explosion and Shock Waves, 2015, 35(6): 864-869. (in Chinese) doi: 10.11883/1001-1455(2015)06-0864-07 [8] 彭刚, 王乾峰, 梁春华.有压孔隙水环境中的混凝土动态抗压性能研究[J].土木工程学报, 2015, 48(1): 11-18. http://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201501003.htm PENG Gang, WANG Qianfeng, LIANG Chunhua. Study on dynamic compressive properties of concrete under pore water pressure environment[J]. China Civil Engineering Journal, 2015, 48(1): 11-18. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201501003.htm [9] 刘博文, 彭刚, 邹三兵, 等.循环孔隙水作用下混凝土动态特性试验研究[J].土木建筑与环境工程, 2015, 37(5): 88-93. http://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201505013.htm LIU Bowen, PENG Gang, ZOU Sanbin, et al. Experimental analysis of dynamic properties of concrete under cyclic pore water effects[J]. Journal of Civil, Architectural & Environmental Engineering, 2015, 37(5): 88-93. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201505013.htm [10] 黄常玲, 刘长武, 高云瑞, 等.孔隙水压力条件下混凝土的破坏机理[J].四川大学学报(工程科学版), 2015, 47(2): 76-80. http://www.cnki.com.cn/Article/CJFDTOTAL-SCLH2015S2012.htm HUANG Changling, LIU Changwu, GAO Yunrui, et al. Failure mechanism of concrete under pore water pressure[J]. Journal of Sichuan University: Engineering Science Edition, 2015, 47(2): 76-80. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-SCLH2015S2012.htm [11] 白卫峰, 解伟, 管俊峰, 等.复杂应力状态下孔隙水压力对混凝土抗压强度的影响[J].建筑材料学报, 2015, 18(1) : 24-30. http://www.cnki.com.cn/Article/CJFDTOTAL-JZCX201501006.htm BAI Weifeng, XIE Wei, GUAN Junfeng, et al. Influence of pore water pressure on compressive strength of concrete under complicated stress states[J]. Journal of Building Materials, 2015, 18(1): 24-30. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-JZCX201501006.htm [12] CHEN Zhangfusheng, HU Yu, LI Qingbin, et al. Behavior of concrete in water subjected to dynamic triaxial compression[J]. Journal of Engineering Mechanics, 2010, 136(3): 379-389. doi: 10.1061/(ASCE)0733-9399(2010)136:3(379) [13] 王春来, 徐必根, 李庶林, 等.单轴受压状态下钢纤维混凝土损伤本构模型研究[J].岩土力学, 2006, 27(1): 151-154. http://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200601029.htm WANG Chunlai, XU Bigen, LI Shulin, et al. Study on a constitutive model of SFRC under uniaxial compression[J]. Rock and Soil Mechanics, 2006, 27(1): 151-154. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200601029.htm [14] 梁辉, 邹荣华, 彭刚, 等.基于Weibull统计理论的混凝土率型损伤本构模型研究[J].长江科学院院报, 2016, 33(2): 111-114. doi: 10.11988/ckyyb.20140695 LIANG Hui, ZOU Ronghua, PENG Gang, et al. Rate-dependent constitutive model of concrete based on the statistical theory of weibull[J]. Journal of Yangtze River Scientific Research Institute, 2016, 33(2): 111-114. (in Chinese) doi: 10.11988/ckyyb.20140695 [15] 彭刚, 刘德富, 戴会超.钢纤维混凝土动态压缩性能及全曲线模型研究[J].工程力学, 2009, 26(2): 142-147. http://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200902027.htm PENG Gang, LIU Defu, DAI Huichao. Investigation of dynamic constitutive model of steel fiber concrete under conventional tri-axial compression[J]. Engineering Mechanics, 2009, 26(2): 142-147. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200902027.htm [16] LEMAITRE J. Local approach of fracture[J]. Engineering Fracture Mechanics, 1986, 25(5/6): 523-537. -