Mechanical properties of concrete under confining pressure after cyclic loading
-
摘要: 对不同围压(0, 2, 5, 10 MPa)下的水饱和混凝土试件,历经25次循环荷载作用后(荷载下限140 kN,上限260 kN,频率0.1 Hz),进行了不同加载速率(地震荷载作用下的混凝土应变速率响应范围10-5/s~10-2/s)下的静动态常三轴抗压性能试验。分析了混凝土峰值应力、峰值应变以及损伤特性。结果表明:历经循环荷载后,随着加载速率的增加,混凝土峰值应力增大,峰值应变整体上逐渐增大,损伤变量D增长速度减缓;随着围压增加,混凝土峰值应力和峰值应变逐渐增大,损伤变量D增长速度降低,但损伤极限差值越来越大。基于上述试验结果,得到了历经荷载循环后混凝土动态峰值应力与围压、加载速率有关的经验计算式及历经荷载循环后混凝土动态峰值应变与围压、加载速率有关的经验式。Abstract: After 25 cycles of loads (the lower limit of load is 140 kN, the upper limit of load is 260 kN, the frequency is 0.1 Hz), the triaxial compression tests for different confining pressures (0, 2, 5, 10 MPa) of water saturated concrete under different loading rates (the response range of strain rate of concrete under seismic load is 10-5/s~10-2/s) are carried out, and the peak stress and peak strain of concrete and damage characteristics are analyzed in this study. The analysis results show that after cyclic loading: ① with the increase of the loading rates, the peak stress and the peak strain of concrete increase gradually, and the growth rate of damage variables slows down; ② with the increase of the confining pressures, the peak stress and the peak strain of concrete increase gradually. The growth rate of the damage variables is slowing down, but the D-value of damage limit is becoming larger. Based on the experimental results mentioned above, an empirical formula for the dynamic peak stress of concrete with the confining pressures and loading rates after cyclic loading is obtained from the experimental tests. And an empirical formula for the dynamic peak strain of concrete with the confining pressures and loading rates after cyclic loading has also been got based on the above test results.
-
Key words:
- concrete /
- water environment /
- confining pressure /
- cyclic load
-
表 1 混凝土峰值应力统计
Table 1. Concrete peak stress statistics
围压/MPa 峰值应力/MPa 加载速率/10-5s-1 加载速率/10-4s-1 加载速率/10-3s-1 加载速率/10-2s-1 0 22.28/- 23.90/7.27% 26.87/20.60% 31.59/41.79% 2 28.08/- 31.30/11.47% 34.44/22.65% 41.18/46.65% 5 32.79/- 37.98/15.83% 46.24/41.02% 50.93/55.32% 10 34.46/- 41.33/19.94% 50.19/45.65% 59.96/74.00% 注:“/”前数值为峰值应力,“/”后数值为相对于第1列的增幅。 表 2 混凝土的峰值应变
Table 2. Peak strain of concrete
围压/MPa 峰值应变/10-3 加载速率/10-5s-1 加载速率/10-4s-1 加载速率/10-3s-1 加载速率/10-2s-1 0 3.330/- 3.841/15.32% 4.146/24.50% 5.155/54.80% 2 4.005/- 4.182/4.40% 5.289/32.05% 7.013/75.10% 5 4.724/- 4.370/-7.50% 6.774/43.39% 10.866/130.03% 10 4.579/- 5.263/14.94% 10.500/129.29% 12.274/168.03% 注:“/”前数值为峰值应变,“/”后数值为相对于第1列的增幅。 -
[1] BUTLER J. The influence of pore pressure upon concrete[J]. Magazine of Concrete Research, 1981, 33(114): 3-17. doi: 10.1680/macr.1981.33.114.3 [2] XUAN H V, MALECOT Y, DAUDEVILLE L, et al. Experimental analysis of concrete behavior under high confinement: Effect of the saturation ratio[J]. International Journal of Solids and Structures, 2009, 46(5): 1105-1120. doi: 10.1016/j.ijsolstr.2008.10.015 [3] CHEN Z, HU Y, LI Q, et al. Behavior of concrete in water subjected to dynamic triaxial compression[J]. Journal of Engineering Mechanics, 2010, 136(3): 379-389. doi: 10.1061/(ASCE)0733-9399(2010)136:3(379) [4] 彭刚, 王乾峰, 梁春华.有压孔隙水环境中的混凝土动态抗压性能研究[J].土木工程学报, 2015, 48(1): 11-18. http://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201501003.htm PENG Gang, WANG Qianfeng, LIANG Chunhua. Study on dynamic compressive properties of concrete under pore water pressure environment[J]. China Civil Engineering Journal, 2015, 48(1): 11-18. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201501003.htm [5] BRVHWILER E, WITTMANN F H. Failure of dam concrete subjected to seismic loading conditions[J]. Engineering Fracture Mechanics, 1990, 35(1/3): 565-571. https://infoscience.epfl.ch/record/181074/files/Br%C3%BChwiler-Wittmann-1990.pdf [6] 林皋, 周洪涛, 黄承逵.循环加载历史对混凝土断裂特性影响的试验研究[J].水利学报, 1994(5): 25-30. http://www.cnki.com.cn/Article/CJFDTOTAL-SLXB405.003.htm LIN Gao, ZHOU Hongtao, HUANG Chenkui. Experimental study of the effect of cyclic loading history on the fracture properties of concrete[J]. Journal of Hydraulic Engineering, 1994(5): 25-30. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-SLXB405.003.htm [7] 林皋, 王哲, 逯静洲, 等.三向等压荷载历史对混凝土的强度和变形特性影响的研究[J].水力发电学报, 2001(3): 31-41. http://www.cnki.com.cn/Article/CJFDTOTAL-SFXB200103003.htm LIN Gao, WANG Zhe, LU Jingzhou, et al. Effect of triaxial equi-compressional loading history on the strength and deformation behavior of concrete[J]. Journal of Hydroelectric Engineering, 2001(3): 31-41. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-SFXB200103003.htm [8] 肖诗云, 张剑.荷载历史对混凝土动态受压损伤特性影响试验研究[J].水利学报, 2010, 41(8): 943-952. http://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201008011.htm XIAO Shiyun, ZHANG Jian. Experiment study on effect of load histories on dynamic compressive damage behaviors of concrete[J]. Journal of Hydraulic Engineering, 2010, 41(8): 943-952. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201008011.htm [9] 梁春华. 水压作用下的混凝土率效应研究[D]. 宜昌: 三峡大学, 2013. LIANG Chunhua. The study on rate effect of concrete under hydraulic pressure[D]. Yichang: China Three Gorges University, 2013. (in Chinese) [10] 闫东明. 混凝土动态力学性能试验与理论研究[D]. 大连: 大连理工大学, 2006. http://cdmd.cnki.com.cn/Article/CDMD-10141-2006064872.htm YAN Dongming. Experimental and theoretical study on the dynamic properties of concrete[D]. Dalian: Dalian University of Technology, 2006. (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10141-2006064872.htm [11] RICHART F E, BRANDTZAEG A, BROWN R L. A study of the failure of concrete under combined compressive stresses[M]. Illinois: University of Illinois, 1928: 185. -