Numerical study of hydrodynamic characteristics of dam-break headcut flow
-
摘要: 黏性土坝漫顶溃决涉及多学科交叉,过程极其复杂,尽管国内外大量物理模型试验成果表明其溃决多以“跌坎式”溯源冲蚀为主要特征,然而对该冲蚀发展形式下的水流-坝体微观作用机制尚不清晰。水流作为漫顶溃决的冲刷主动力,对坝体溃决发展起着主导性作用,采用RNG k-ε紊流模型和VOF自由液面捕捉技术针对黏性土坝漫顶溃决代表性水流结构——溃决跌坎水流开展了三维数值模拟研究,对跌坎水流的水流结构、流态、水力特性指标等进行了细致分析,揭示了不同工况下坝体跌坎上的剪切应力、流速分布规律,进而从水动力学的角度对坝面进行受力分析,初步推断了黏性土坝漫顶溃决过程中各级跌坎的主要合并方式为“台阶水平面刷深下切”。研究成果为进一步掌握黏性土坝漫顶溃决发展演变机理提供了理论基础。Abstract: The dam-break process of clay soil dam under overtopping condition, related to multi-disciplines, is very complex. Although a large number of domestic and foreign physical model test results show that the headcut erosion caused by overtopping is the main breach process of most clay soil dams, the micro mechanism between water flow and dam body in the form of erosion is still not clear. The water flow plays a leading role in the development of dam break as it's the active force during overtopping failure. In the study, 3D numerical simulation research is carried out on the representative flow structure—the headcut flow, by using the RNG k-ε turbulence model and the volume of fluid (VOF) method. The flow structure, flow pattern and hydraulic characteristics of the dam headcut are analyzed in detail. Also, the distributions of shear stress and flow velocity in different working conditions are revealed. By using the research results, the analysis of the forces on dam body can be carried out from the point of view of hydrodynamics. The main way of all-level headcuts merged is inferred initially. The research results can help to make a clear understanding of the dam-break process.
-
Key words:
- clay soil dam /
- overtopping /
- headcut flow /
- hydrodynamic characteristics /
- numerical simulation
-
表 1 数模计算工况
Table 1. Numerical calculation conditions
编号 S1 S2 S3 S4 S5 S6 S7 S8 跌坎高度/cm 4 6 6 6 6 8 10 12 漫顶水深/cm 3 2 3 4 5 3 3 3 -
[1] 中华人民共和国水利部, 中华人民共和国国家统计局.第一次全国水利普查公报[M].北京:中国水利水电出版社, 2013. The Ministry of Water Resources of the People's Republic of China, National Bureau of Statistics of the People's Republic of China. Bulletin of first national census for water[M]. Beijing: China Water Power Press, 2013. (in Chinese) [2] 李云, 李君.溃坝模型试验研究综述[J].水科学进展, 2009, 20(2): 304-310. http://d.wanfangdata.com.cn/Periodical/skxjz200902024 LI Yun, LI Jun. Review of experimental study on dam-break[J]. Advances in Water Science, 2009, 20(2): 304-310. (in Chinese) http://d.wanfangdata.com.cn/Periodical/skxjz200902024 [3] 朱勇辉, VISSER P J, VRIJLING J K, 等.堤坝溃决试验研究[J].中国科学:技术科学, 2011, 41(2): 150-157. http://d.wanfangdata.com.cn/Conference/7783768 ZHU Yonghui, VISSER P J, VRIJLING J K, et al. Experimental investigation on breaching of embankments[J]. Scientia Sinica (Technological), 2011, 41(2): 150-157. (in Chinese) http://d.wanfangdata.com.cn/Conference/7783768 [4] 郭军.欧美国家近期溃坝研究及发展动向[J].中国水利, 2005(4): 23-26, 29. http://d.wanfangdata.com.cn/Periodical/zhonggsl200504007 GUO Jun. Recent studies and activities on dam breach in European countries and United States[J]. China Water Resources, 2005(4): 23-26, 29. (in Chinese) http://d.wanfangdata.com.cn/Periodical/zhonggsl200504007 [5] HANSON G J, COOK K R, HUNT S L. Physical modeling of overtopping erosion and breach formation of cohesive embankments[J]. Transactions of the ASAE, 2005, 48(5): 1783-1794.. doi: 10.13031/2013.20012 [6] ZHANG Jianyun, LI Yun, XUAN Guoxiang, et al. Overtopping breaching of cohesive homogeneous earth dam with different cohesive strength[J]. Science in China Series E: Technological Sciences, 2009, 52(10): 3024-3029.. doi: 10.1007/s11431-009-0275-1 [7] POWLEDGE G R, RALSTON D C, MILLER P, et al. Mechanics of overflow erosion on embankments[J]. Journal of Hydraulic Engineering, 1989, 115(8): 1056-1075.. doi: 10.1061/(ASCE)0733-9429(1989)115:8(1056) [8] 李云, 王晓刚, 刘火箭, 等.土石坝漫顶过程水力特性分析[J].水动力学研究与进展(A辑), 2012, 27(2): 147-153. http://d.wanfangdata.com.cn/Periodical/sdlxyjyjz201202005 LI Yun, WANG Xiaogang, LIU Huojian, et al. Overtopping hydraulic characteristics of earth-rock dam[J]. Chinese Journal of Hydrodynamics, 2012, 27(2): 147-153. (in Chinese) http://d.wanfangdata.com.cn/Periodical/sdlxyjyjz201202005 [9] 魏文礼, 郭永涛, 王纪森.一维溃坝洪水波的高精度数值模拟[J].计算力学学报, 2007, 24(3): 362-364. http://d.wanfangdata.com.cn/Periodical/jslxxb200703020 WEI Wenli, GUO Yongtao, WANG Jisen. One-dimensional dam-break numerical simulation based on ENO scheme[J]. Chinese Journal of Computational Mechanics, 2007, 24(3): 362-364. (in Chinese) http://d.wanfangdata.com.cn/Periodical/jslxxb200703020 [10] 黄金池, 何晓燕.溃坝洪水的统一二维数学模型[J].水利学报, 2006, 37(2): 222-226. http://d.wanfangdata.com.cn/Periodical/slxb200602016 HUANG Jinchi, HE Xiaoyan. Unified 2-D numerical model for simulating dam break wave propagation[J]. Journal of Hydraulic Engineering, 2006, 37(2): 222-226. (in Chinese) http://d.wanfangdata.com.cn/Periodical/slxb200602016 [11] 张新华, 隆文非, 谢和平, 等.任意多边形网格2D FVM模型及其在城市洪水淹没中的应用[J].四川大学学报(工程科学版), 2007, 39(4): 6-11. http://d.wanfangdata.com.cn/Periodical/scdxxb-gckx200704002 ZHANG Xinhua, LONG Wenfei, XIE Heping, et al. 2D FVM model based on an arbitrary polygonal mesh system for the simulation of flood inundation and its application in municipal regions[J]. Journal of Sichuan University(Engineering Science Edition), 2007, 39(4): 6-11. (in Chinese) http://d.wanfangdata.com.cn/Periodical/scdxxb-gckx200704002 [12] 夏军强, 王光谦, LIN Binliang, 等.复杂边界及实际地形上溃坝洪水流动过程模拟[J].水科学进展, 2010, 21(3): 289-298. http://d.wanfangdata.com.cn/Periodical/skxjz201003001 XIA Junqiang, WANG Guangqian, LIN Binliang, et al. Two-dimensional modelling of dam-break floods over actual terrain with complex geometries using a finite volume method[J]. Advances in Water Science, 2010, 21(3): 289-298. (in Chinese) http://d.wanfangdata.com.cn/Periodical/skxjz201003001 [13] 祝龙, 李云, 宣国祥, 等.溃坝典型水流水力特性试验研究[J].水资源与水工程学报, 2015, 26(5): 132-136. http://d.wanfangdata.com.cn/Periodical/xbszyysgc201505026 ZHU Long, LI Yun, XUAN Guoxiang, et al. Experiment on hydraulic characteristics of typical dam break flow[J]. Journal of Water Resources and Water Engineering, 2015, 26(5): 132-136. (in Chinese) http://d.wanfangdata.com.cn/Periodical/xbszyysgc201505026 -