Numerical study of hydraulic characteristics of self-diffluence structure in second diversion port of high-head lock
-
摘要: 高水头船闸输水水流能量巨大,水力指标高,对输水系统布置和型式提出了更高要求。大藤峡水利枢纽工程船闸最大设计水头40.25 m,输水系统第二分流口拟采用空腔自分流型式,在国内外尚无先例。通过采用三维数值模拟的技术手段对该分流口型式及输水系统整体分流性能进行系统研究,详细分析在各典型充、泄水时刻第二分流口部位的水动力特性,论证在工程实际应用中的可行性。研究结果表明,在合理布置各分支廊道的出水支孔尺寸后,该分流口型式在充、泄水过程中分流效果较好,但在分流口内部存在典型流速、压力分布区域,特别是在泄水工况下分流口大墩头附近存在较大范围三角低流速紊动区域,可能会对分流口结构造成不利影响。研究成果可为全面掌握该分流口型式的水力特性以及进一步改进优化提供技术参考。Abstract: The water flow energy of high-head lock is huge, and the hydraulic indexes are quite high, which puts forward higher requirements for the layout and type selection of the filling and emptying system.The maximum design head of Datengxia single-step lock is 40.25 m. The second diversion port of the filling and emptying system is intended to adopt a self-diffluence structure and there is no precedent at home and abroad. A systematic research on the diversion port and the performance of filling and emptying system is carried out in this study by means of three-dimensional numerical simulation. The hydrodynamic characteristics of the second diversion port at typical charging and discharging time are analyzed in detail. What's more, the feasibility of its application in practical engineering is demonstrated. The results show that the diffluence effect is relatively good in the process of charging and discharging through reasonable arrangement of the outlet hole size of each branch corridor. However, the typical flow velocity and pressure distribution area will appear inside the diversion port, especially in the case of discharging. There is a large region of triangular low velocity turbulent flow near the big pier head, which may have an adverse impact on the structure of the diversion port. The research results can provide reliable technical reference for fully understanding the hydraulic characteristics of this type of diversion port and also contribute to its further improvement and optimization.
-
Key words:
- lock /
- diversion port /
- self-diffluence /
- hydraulic characteristics /
- numerical simulation
-
表 1 典型测点压力特性对比验证
Table 1. Comparison of the pressure characteristics of typical measuring points
典型时刻的Q-H 数据来源 测点时均压力/m 相对误差/% 800 m3/s,30.6 m 数值模拟 28.52 0.85 模型试验 28.28 600 m3/s,25.4 m 数值模拟 20.80 1.36 模型试验 20.52 400 m3/s,22.5 m 数值模拟 15.16 -3.07 模型试验 15.64 -
[1] 熊治平.河流概论[M].北京:中国水利水电出版社, 2011. XIONG Zhiping. An introduction to rivers[M]. Beijing: China Water & Power Press, 2011. (in Chinese) [2] 涂启明. 考察五强溪、万安、水口船闸[C]//通航论文集, 1999: 267-271. TU Qiming. Investigation of Wuqiangxi, Wan'an and Shuikou lock[C]//The Third Symposium of the Navigation Specialized Committee of CSHE, 1999: 267-271. (in Chinese) [3] 钮新强, 童迪.三峡船闸关键技术研究[J].水力发电学报, 2009, 28(6): 36-42. http://www.cqvip.com/QK/94793A/201407/661645870.html NIU Xinqiang, TONG Di. Research on the key technologies of Three Gorges shiplocks[J]. Journal of Hydroelectric Engineering, 2009, 28(6): 36-42. (in Chinese) http://www.cqvip.com/QK/94793A/201407/661645870.html [4] 宣国祥, 李云, 胡亚安, 等. 西部超高水头枢纽通航建筑物关键技术研究[R]. 南京: 南京水利科学研究院, 2007. XUAN Guoxiang, LI Yun, HU Ya'an, et al. Research on key technologies of navigation structures under the super high water head of western China[R]. Nanjing: Nanjing Hydraulic Research Institute, 2007. (in Chinese) [5] 陈明栋, 杨忠超, 杨斌, 等.乌江银盘船闸输水系统选型研究[J].重庆建筑大学学报, 2006, 28(5): 30-34. http://www.wenkuxiazai.com/doc/2368411beff9aef8941e0679.html CHEN Mingdong, YANG Zhongchao, YANG bin, et al. Studies on the type selection of the filling and emptying system of Yingpan lock on Wujiang River[J]. Journal of Chongqing Jianzhu University, 2006, 28(5): 30-34. (in Chinese) http://www.wenkuxiazai.com/doc/2368411beff9aef8941e0679.html [6] 李君, 宣国祥, 黄岳, 等.等惯性两区段分散输水系统在40 m级单级巨型船闸中的应用[J].水运工程, 2016(12): 20-25. doi: 10.3969/j.issn.1002-4972.2016.12.003 LI Jun, XUAN Guoxiang, HUANG Yue, et al. Application of two-section four-manifold total-balanced filling and emptying system in 40 m-grade single-step giant ship lock[J]. Port & Waterway Engineering, 2016(12): 20-25. (in Chinese) doi: 10.3969/j.issn.1002-4972.2016.12.003 [7] 宣国祥, 刘本芹, 李君, 等. 船闸输水系统水力学创新技术研究和实践[R]. 南京: 南京水利科学研究院, 2009. XUAN Guoxiang, LIU Benqin, LI Jun, et al. Research and practice on hydraulic innovation technology of lock filling and emptying system[R]. Nanjing: Nanjing Hydraulic Research Institute, 2009. (in Chinese) [8] 覃业传, 宣国祥, 麦建清, 等.大藤峡水利枢纽单级船闸输水系统初步分析[J].水利水运工程学报, 2012(4): 71-76. http://slsygcxb.cnjournals.org/ch/reader/view_abstract.aspx?file_no=20120479&flag=1 QIN Yechuan, XUAN Guoxiang, MAI Jianqing, et al. Feasibility analysis of the filling and emptying system for Datengxia high head single-step shiplock[J]. Hydro-Science and Engineering, 2012(4): 71-76. (in Chinese) http://slsygcxb.cnjournals.org/ch/reader/view_abstract.aspx?file_no=20120479&flag=1 [9] 程玉姣, 李亚文, 常万军, 等.大藤峡水利枢纽工程船闸位置选择[J].东北水利水电, 2016, 34(7): 3-4. http://www.cqvip.com/QK/95245X/201607/669449903.html CHENG Yujiao, LI Yawen, CHANG Wanjun, et al. The location selection of ship lock in Datengxia hydraulic project[J]. Water Resources & Hydropower of Northeast China, 2016, 34(7): 3-4. (in Chinese) http://www.cqvip.com/QK/95245X/201607/669449903.html [10] 王福军.计算流体动力学分析: CFD软件原理与应用[M].北京:清华大学出版社, 2004. WANG Fujun. Computational fluid dynamics: Principles and applications of CFD software[M]. Beijing: Tsinghua University Press, 2004. (in Chinese) [11] ANDERSON J D.计算流体力学基础及其应用[M].北京:机械工业出版社, 2007. ANDERSON J D. Computational fluid dynamics[M]. Beijing: China Machine Press, 2007. (in Chinese) [12] 韩占忠, 王敬, 兰小平. Fluent—流体工程仿真计算实例与应用[M].北京:北京理工大学出版社, 2010. HAN Zhanzhong, WANG Jing, LAN Xiaoping. Fluent-fluid engineering simulation and its application[M]. Beijing: Beijing Institute of Technology Press, 2010. (in Chinese) [13] STOCKSTILL R L, BERGER R C. A three-dimensional numerical model for flow in a lock filling system[C]//ASCE: World Environmental and Water Resources Congress, 2009: 1-10. -