Model test study of low approach channel of Guigang second line shiplock
-
摘要: 引航道及口门区通航水流条件一直是多线船闸并列布置中十分重视的问题,如布置和运行控制不当,容易导致相关安全问题。建立了1:100的贵港枢纽下游及船闸引航道物理模型,研究贵港二线船闸的布置方案及其对引航道和口门区水流条件的影响。结合贵港枢纽的特点,分析枢纽不同泄流条件下,二线船闸原布置方案中引航道、一线船闸停泊段及口门区的流速大小,得到影响船闸引航道水流条件的控制工况;在此基础上,提出了优化布置方案,对不同布置长度及透空方式下引航道的水流条件进行了对比分析。根据研究成果,推荐二线船闸下引航道内采用隔流墙,布置长度为135 m,底部不透空或透空高度小于0.50 m的方案。研究成果为贵港二线船闸的优化设计提供了参考。Abstract: The flow condition of the approach channel and its entrance in ship locks which are arranged parallelly is a key problem to scholars. An unreasonable layout of locks may lead to safety problems during operation. A physical model test with the scale of 1:100 is carried out to study the flow conditions of different layouts of the second line ship lock at the Guigang navigation junction. Based on the characteristics of the Guigang junction, the flow conditions of the approach channel of the second line ship lock, and the mooring section and the entrance of the first line are analysed under different discharge conditions. Then the control working condition affecting the flow of the approach channel is obtained, based on which the optimized layout schemes are proposed. The flow conditions of the approach channel in different optimized layouts are compared. According to the results, the scheme with the length of guide wall being 135 m and the height of cross section at the bottom of guide wall being less than 0.5 m is recommended. This study can provide a reference for the optimal design of the Guigang second line shiplock.
-
Key words:
- Guigang navigation junction /
- approach channel /
- entrance /
- physical model test /
- flow condition
-
表 1 下游引航道口门区水流条件试验工况
Table 1. Test conditions for the entrance of downstream approach channel
工况 枢纽下泄流量/(m3·s-1) 下游水位/m 枢纽运行方式 DK1 1 000 31.39 电站发电,泄洪闸1#~18#全关 DK2 3 000 34.48 电站发电,泄洪闸8#,10#,12#开启 DK3 5 000 37.53 电站发电,泄洪闸7#~12#开启 DK4 7 000 40.36 电站停机,泄洪闸1#~12#开启 DK5 9 000 42.76 电站停机,泄洪闸1#~18#全开 表 2 一、二线隔流墙研究方案
Table 2. Research schemes of the partition wall between the first and second line shiplocks
布置方案 隔流墙长度/m 透空方式 CX-1 110 不透空 CX-2 110 底部透空高度1.5 m CX-3 135 不透空 CX-4 135 底部透空高度1.5 m CX-5 135 封堵第1孔,其余孔透空高度1.0 m CX-6 135 封堵第1孔,其余孔透空高度0.5 m -
[1] 胡亚安, 宣国祥, 李中华, 等. 三峡升船机引航道布置及结构技术研究[R]. 南京: 南京水利科学研究院, 2011. HU Ya'an, XUAN Guoxiang, LI Zhonghua, et al. Study on approach channel arrangement and structure technology of Three Gorges shiplift[R]. Nanjing: Nanjing Hydraulic Research Institute, 2011. (in Chinese) [2] 陈阳, 李炎, 孟祥玮.船闸引航道内水面波动的二维数学模型研究[J].水道港口, 1998(3): 21-27. https://www.wenkuxiazai.com/doc/0d99bb8202d276a200292eab.html CHEN Yang, LI Yan, MENG Xiangwei. 2-D numerical model of wave motion in lock approach channel[J]. Journal of Waterway and Harbor, 1998(3): 21-27. (in Chinese) https://www.wenkuxiazai.com/doc/0d99bb8202d276a200292eab.html [3] 周华兴.双线船闸共用引航道的尺度分析[J].水道港口, 1992(4): 42-48. http://d.wanfangdata.com.cn/Thesis/Y2090461 ZHOU Huaxing. Scale analysis of approach channels in double line shiplocks[J]. Journal of Waterway and Harbor, 1992(4): 42-48. (in Chinese) http://d.wanfangdata.com.cn/Thesis/Y2090461 [4] JTJ 305—2001船闸总体设计规范[S]. JTJ 305—2001 Code for master design of shiplocks[S]. (in Chinese) [5] 刘本芹. 西江航运干线贵港航运枢纽二线船闸工程下游引航道及口门区水流条件数值模拟研究[R]. 南京: 南京水利科学研究院, 2014. LIU Benqin. Numerical simulation study on navigation condition of Guigang second ship lock[R]. Nanjing: Nanjing Hydraulic Research Institute, 2014. (in Chinese) [6] 刘本芹. 西江航运干线贵港航运枢纽二线船闸工程整体水工模型试验研究报告[R]. 南京: 南京水利科学研究院, 2014. LIU Benqin. Model test study on navigation condition of Guigang second ship lock[R]. Nanjing: Nanjing Hydraulic Research Institute, 2014. (in Chinese) [7] SL 155—2012水工(常规)模型试验规程[S]. SL 155—2012 Specification for normal hydraulic model test[S]. (in Chinese) [8] 蔡守允, 刘兆衡, 张晓红, 等.水利工程模型试验量测技术[M].北京:海洋出版社, 2008. CAI Shouyun, LIU Zhaoheng, ZHANG Xiaohong, et al. Measurement technology of hydraulic model test[M]. Beijing: China Ocean Press, 2008. (in Chinese) [9] 徐慧敏.关于水利工程中河道糙率的研究[J].水利科技与经济, 2010, 16(11): 1253-1256. doi: 10.3969/j.issn.1006-7175.2010.11.023 XU Huimin. Study of the channel roughness in hydraulic project[J]. Water Conservancy Science and Technology and Economy, 2010, 16(11): 1253-1256. (in Chinese) doi: 10.3969/j.issn.1006-7175.2010.11.023 -