Application of fractal theory in rockfill rheology
-
摘要: 流变过程中堆石颗粒不断破碎,分形维数在流变过程中随时间发生变化。基于流变过程基本规律,将分形理论应用于堆石料流变过程,构造了两类随时间变化的流变过程分形维数,并建立了颗粒破碎率与分形维数的关系。通过分析过程流变试验颗粒破碎率的变化规律,验证了流变过程中双曲线型分形维数假定的合理性。在此基础上,考虑流变过程中的能量关系并结合颗粒破碎耗能的相关研究,进一步推导了堆石料流变过程中体变随时间的变化规律,从而建立堆石料特定荷载情况下的流变本构模型。与试验结果对比表明:该模型可以从分形的角度反映堆石料流变规律。Abstract: The rockfill material crushes during the process of rheology and the fractal dimension of rockfill material varies with time. Based on the basic rule of rheological process of coarse-grained soils, the fractal theory is applied into the analysis of rheological process, and two typical expressions of fractal dimension that varies with time are given. The reationship between the particle breakage index and the fractal dimension is also described. By analysing the particle breakage index of incomplete rheological test, the reasonability of the expression of hyperbola fractal dimension during rheological process is confirmed. On this basis, the volumetric strain is derived considering the energy balance of coarse granular aggregates and the related research of the particle breakage energy. Thus a rheological constitutive model for rockfill materials is proposed. Compared with experimental data, the proposed model can reflect the rheological properties of rockfill material based on fractal theory.
-
Key words:
- rockfill material /
- rheology /
- fractal dimension /
- particle breakage index /
- constitutive model
-
表 1 试样颗粒级配
Table 1. Particle size distribution of sample
粒径/mm 60~50 50~40 40~30 30~20 20~10 10~5 < 5 质量百分比/% 8.52 8.22 9.79 16.68 20.21 15.20 21.38 表 2 过程流变试验结束后的级配
Table 2. Particle size distribution after test
不同粒径颗粒含量/% 粒径区间/mm 制样前 剪切结束 1 h 4 h 8 h 24 h 60~50 8.52 8.06 5.96 6.65 6.81 7.36 50~40 8.22 7.35 9.55 8.72 8.46 6.72 40~30 9.79 11.02 8.62 8.60 9.23 11.39 30~20 16.68 14.48 17.78 17.19 17.38 13.51 20~10 20.21 19.53 19.40 20.15 20.21 20.06 10~5 15.20 15.77 14.90 15.47 13.92 16.64 < 5 21.38 23.79 23.81 23.22 13.92 24.33 表 3 模型参数取值
Table 3. Values of model parameters
参数 M α β γ s1 s2 s3 a 数值 1.58 7.7×10-4 0.478 0.041 -0.64 1.32 1.20 1.02 -
[1] 郦能惠.高混凝土面板堆石坝设计理念探讨[J].岩土工程学报, 2007, 29(8): 1143-1150. http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_ytgcxb200708005 LI Nenghui. New concept of design for high concrete face rockfill dams[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(8): 1143-1150. (in Chinese) http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_ytgcxb200708005 [2] MCDOWELL G R, BOLTON M D, ROBERTSON D. The fractal crushing of granular materials[J]. Journal of the Mechanics and Physics of Solids, 1996, 44(12): 2079-2101. doi: 10.1016/S0022-5096(96)00058-0 [3] COOP M R, SORENSEN K K, FREITAS T B, et al. Particle breakage during shearing of a carbonate sand[J]. Geotechnique, 2004, 54(3): 157-163. doi: 10.1680/geot.2004.54.3.157 [4] 陈海洋, 汪稔, 李建国, 等.钙质砂颗粒的形状分析[J].岩土力学, 2005, 26(9): 1389-1392. doi: 10.3969/j.issn.1000-7598.2005.09.008 CHEN Haiyang, WANG Ren, LI Jianguo, et al. Grain shape analysis of calcareous soil[J]. Rock and Soil Mechanics, 2005, 26(9): 1389-1392. (in Chinese) doi: 10.3969/j.issn.1000-7598.2005.09.008 [5] 魏巍, 姜程程, 覃燕林, 等.人工模拟堆石料颗粒破碎的分形特性[J].人民黄河, 2014, 36(12): 126-129. doi: 10.3969/j.issn.1000-1379.2014.12.039 WEI Wei, JIANG Chengcheng, QIN Yanlin, et al. Fractal behavior in crushing of artificial rockfill materials[J]. Yellow River, 2014, 36(12): 126-129. (in Chinese) doi: 10.3969/j.issn.1000-1379.2014.12.039 [6] 张季如, 祝杰, 黄文竞.侧限压缩下石英砂砾的颗粒破碎特性及其分形描述[J].岩土工程学报, 2008, 30(6): 783-789. doi: 10.3321/j.issn:1000-4548.2008.06.001 ZHANG Jiru, ZHU Jie, HUANG Wenjing. Crushing and fractal behaviors of quartz sand-gravel particles under confined compression[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(6): 783-789. (in Chinese) doi: 10.3321/j.issn:1000-4548.2008.06.001 [7] 张季如, 胡泳, 张弼文, 等.石英砂砾破碎过程中粒径分布的分形行为研究[J].岩土工程学报, 2015, 37(5): 784-791. doi: 10.11779/CJGE201505003 ZHANG Jiru, HU Yong, ZHANG Biwen, et al. Fractal behavior of particle-size distribution during particle crushing of a quartz sand and gravel[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(5): 784-791. (in Chinese) doi: 10.11779/CJGE201505003 [8] 石修松, 程展林.堆石料颗粒破碎的分形特性[J].岩石力学与工程学报, 2010, 29(增刊2): 3852-3857. http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_rmhh201412041 SHI Xiusong, CHENG Zhanlin. Fractal behavior in crushing of rockfill material[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(Suppl2): 3852-3857. (in Chinese) http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_rmhh201412041 [9] MARSAL R J. Large scale testing of rockfill materials[J]. Journal of the Soil Mechanics and Foundations Division, 1967, 93(SM2): 27-43. [10] XIAO Yang, LIU Hanlong, CHEN Yumin, et al. Strength and deformation of rockfill material based on large-scale triaxial compression tests. Ⅰ: Influence of particle breakage[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(12): 0401-4070. [11] EINAV I. Breakage mechanics—Part Ⅰ: Theory[J]. Journal of the Mechanics and Physics of Solids, 2007, 55(6): 1274-1297. doi: 10.1016/j.jmps.2006.11.003 [12] 贾宇峰, 迟世春, 林皋.考虑颗粒破碎的粗粒土剪胀性统一本构模型[J].岩土力学, 2010, 31(5): 1381-1388. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-AGLU200811002040.htm JIA Yufeng, CHI Shichun, LIN Gao. Dilatancy unified constitutive model for coarse granular aggregates incorporating particle breakage[J]. Rock and Soil Mechanics, 2010, 31(5): 1381-1388. (in Chinese) http://cpfd.cnki.com.cn/Article/CPFDTOTAL-AGLU200811002040.htm [13] UENG T S, CHEN T J. Energy aspects of particle breakage in drained shear of sands[J]. Geotechnique, 2000, 50(1): 65-72. doi: 10.1680/geot.2000.50.1.65 [14] MANDELBROT B B. The fractal geometry of nature[M]. New York:W H Freeman and Company, 1983. [15] TYLER S W, WHEATCRAFT S W. Fractal scaling of soil particle size distributions:analysis and limitations[J]. Soil Science Society of America Journal, 1992, 56(2): 362-369. doi: 10.2136/sssaj1992.03615995005600020005x [16] 贾荷花, 李传统.分形理论在颗粒物研究中的应用[J].南京师范大学学报(工程技术版), 2010, 10(2): 39-44. http://www.cqvip.com/QK/90721X/201202/41815964.html JIA Hehua, LI Chuantong. Application of fractal theory in the studies of particlate matters[J]. Journal of Nanjing Normal University(Engineering and Technology), 2010, 10(2): 39-44. (in Chinese) http://www.cqvip.com/QK/90721X/201202/41815964.html [17] SALIM W, INDRARATNA B. A new elastoplastic constitutive model for coarse granular aggregates incorporating particle breakage[J]. Canadian Geotechnical Journal, 2004, 41(3): 657-674. doi: 10.1139/t04-025 -