Impacts of offshore complex environment factors on cracks in concrete piers
-
摘要: 近海大体积混凝土结构所处的外界环境以及地质条件比较复杂,对于带裂缝水闸结构来说,因所处的地理位置、气候变化以及潮汐升降水位等因素的缘故,水闸闸墩裂缝处于张合状态,这降低了水闸结构的稳定性,甚至会影响水闸结构的寿命。沿海环境温度变化对混凝土裂缝宽度变化的实际监测分析,对于混凝土结构安全耐久性评价具有一定价值,依托典型软土地基永定新河防潮闸工程,利用测缝计对闸墩裂缝宽度变化进行健康监测。主要研究运行期环境因素(以空气温度、水温以及潮汐水位为主)对闸墩裂缝的影响,采用健康安全监测软件,通过对数据的挖掘处理,得出环境温度和水位是影响闸墩水下裂缝宽度变化的敏感性因素的结论,为以后水闸闸墩裂缝的安全维护和裂缝的预防提供思路。Abstract: The external environment and geological conditions of offshore mass concrete structure are quite complex. For the sluice structures with cracks, because of the geographical position, climate changes and tidal water level fluctuation, the cracks in the sluice pier are in a state of tension, which reduces the stability of the sluice structure and even affects their service life. The actual monitoring analysis of the changes in the coastal environment temperature has a certain value for the safety and durability evaluation of the concrete structures. Therefore, taking the Yongding New River sluice gate works placed on the typical soft soil foundation as a case history, the pier crack width is monitored by the crackmeter. The studies of influences of environmental factors during the period of operation (mainly atmospheric temperature, water temperature and tide level fluctuation) on the cracks of the piers are carried out in this paper. The health and safety monitoring software is adopted to process the measured data. From the analyses it is found that the environmental temperature and water level fluctuation are the sensitive factors affecting the variation of underwater crack width of the pier. The study provides a new idea for the safety maintenance and prevention of the cracks in the floodgate piers in the future.
-
表 1 混凝土裂缝分类标准
Table 1. Concrete crack classification standards
项目 裂缝类型 特性 裂缝宽度/mm 裂缝深度 水工混凝土 A类裂缝 龟裂或细微裂缝 δ<0.2 h≤300 mm B类裂缝 表面或浅层裂缝 0.2≤δ<0.3 300 mm<h≤100 cm,且不超过结构宽度的1/4 C类裂缝 深层裂缝 0.3≤δ<0.4 100 cm≤h<200 cm,或大于结构厚度的1/4 D类裂缝 贯穿性裂缝 δ≥0.4 h≥200 cm或大于2/3结构厚度 -
[1] 高昆, 田砾, 肖范, 等.临海复杂地质大体积地下混凝土结构防裂控制施工技术[J].混凝土, 2012(2): 119-120, 123. http://www.cqvip.com/QK/94658A/201202/40979859.html GAO Kun, TIAN Li, XIAO Fan, et al. Technology of cracks control of underground mass concrete construction located in beach complex geological conditions[J]. Concrete, 2012(2): 119-120, 123. (in Chinese) http://www.cqvip.com/QK/94658A/201202/40979859.html [2] 赵之瑾, 关新强.水闸闸墩裂缝成因及防治措施[J].水利水电科技进展, 2003, 23(4): 62-65. http://www.cnki.com.cn/Article/CJFDTotal-HLKX201533241.htm ZHAO Zhijin, GUAN Xinqiang. Causes of cracking in sluice abutment and preventive measures[J]. Advances in Science and Technology of Water Resources, 2003, 23(4): 62-65. (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-HLKX201533241.htm [3] 方卫华.水闸安全监测及可靠性评价研究[J].贵州水力发电, 2006, 20(2): 61-65. http://www.cqvip.com/QK/87659X/200602/21760648.html FANG Weihua. Research on sluice safety monitoring and reliability evaluation[J]. Guizhou Water Power, 2006, 20(2): 61-65. (in Chinese) http://www.cqvip.com/QK/87659X/200602/21760648.html [4] 韦华, 陈迅捷, 魏治文, 等.大型水闸挡土墙典型裂缝成因分析及防治措施[J].水利水运工程学报, 2013(1): 47-53. http://slsygcxb.cnjournals.org/ch/reader/view_abstract.aspx?file_no=201301008&flag=1 WEI Hua, CHEN Xunjie, WEI Zhiwen, et al. Cause analysis of typical crack on a sluice retaining wall and its prevention measures[J]. Hydro-Science and Engineering, 2013(1): 47-53. (in Chinese) http://slsygcxb.cnjournals.org/ch/reader/view_abstract.aspx?file_no=201301008&flag=1 [5] 冯德成, 田林, 曹鹏.基于扩展有限元方法的路基不均匀沉降纵向裂缝分析[J].工程力学, 2011, 28(5): 149-154. http://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2015S1103.htm FENG Decheng, TIAN Lin, CAO Peng. Study on longitudinal cracking during settlement of soil based on extended finite element method[J]. Engineering Mechanics, 2011, 28(5): 149-154. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2015S1103.htm [6] 吕杨, 张社荣, 于茂, 等.基于XFEM的寒潮作用下水闸开裂性状分析[J].水利水运工程学报, 2015(3): 95-100. http://slsygcxb.cnjournals.org/ch/reader/view_abstract.aspx?file_no=201503014&flag=1 LYU Yang, ZHANG Sherong, YU Mao, et al. Cracking behaviour analysis of sluices under the action of cold waves based on XFEM[J]. Hydro-Science and Engineering, 2015(3): 95-100. (in Chinese) http://slsygcxb.cnjournals.org/ch/reader/view_abstract.aspx?file_no=201503014&flag=1 [7] 张社荣, 王高辉, 孙博, 等.基于扩展有限元法的重力坝强震潜在失效模式分析[J].水利学报, 2012, 43(12): 1431-1439. http://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201212008.htm ZHANG Sherong, WANG Gaohui, SUN Bo, et al. Seismic potential failure mode analysis of concrete gravity dam based on extended finite element method[J]. Journal of Hydraulic Engineering, 2012, 43(12): 1431-1439. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201212008.htm [8] 谢石. 澧南闸裂缝成因及加固方案优化研究[D]. 南京: 河海大学, 2006. XIE Shi. Study on the cause of Linan sluice crack and the optimization of reinforcement schemes[D]. Nanjing: Hohai University, 2006. (in Chinese) [9] 袁明道, 肖明, 杨光华.长沙拱坝裂缝状况及寒潮影响的数值分析[J].水力发电学报, 2012, 31(3): 175-181, 187. http://www.cqvip.com/QK/97920X/201203/42429682.html YUAN Mingdao, XIAO Ming, YANG Guanghua. Crack state of Changsha arch dam and analysis of the effects of cold wave[J]. Journal of Hydroelectric Engineering, 2012, 31(3): 175-181, 187. (in Chinese) http://www.cqvip.com/QK/97920X/201203/42429682.html [10] 韦华, 陈迅捷, 魏治文, 等.大型水闸挡土墙典型裂缝成因分析及防治措施[J].水利水运工程学报, 2013(1): 47-53. http://slsygcxb.cnjournals.org/ch/reader/view_abstract.aspx?file_no=201301008&flag=1 WEI Hua, CHEN Xunjie, WEI Zhiwen, et al. Cause analysis of typical crack on a sluice retaining wall and its prevention measures[J]. Hydro-Science and Engineering, 2013(1): 47-53. (in Chinese) http://slsygcxb.cnjournals.org/ch/reader/view_abstract.aspx?file_no=201301008&flag=1 [11] 朱伯芳.大体积混凝土温度应力与温度控制[M].北京:中国水利水电出版社, 2012. ZHU Bofang. Thermal stress and temperature control of mass concrete[M]. Beijing: China Electric Power Press, 2012. (in Chinese) [12] 田振华, 郑东健, 姚远, 等.大体积混凝土寒潮期温度应力及表面保温分析[J].水电能源科学, 2011, 29(5): 93-95. http://www.cqvip.com/QK/95255X/201105/37685644.html TIAN Zhenhua, ZHENG Dongjian, YAO Yuan, et al. Surface thermal stress and insulation of the dock foundation mass concrete during the period of cold wave[J]. Water Resources and Power, 2011, 29(5): 93-95. (in Chinese) http://www.cqvip.com/QK/95255X/201105/37685644.html [13] 吉顺文, 朱岳明, 蒋一鸣.平原地区水工混凝土裂缝成因与防裂研究[J].三峡大学学报(自然科学版), 2009, 31(4): 37-39. http://www.cnki.com.cn/Article/CJFDTotal-SLGH201406022.htm JI Shunwen, ZHU Yueming, JIANG Yiming. A study of causes of hydraulic concrete cracking and its prevention measures in plain area[J]. Journal of China Three Gorges University(Natural Sciences), 2009, 31(4): 37-39. (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-SLGH201406022.htm -