Analysis of transition from measured strain to stress of concrete dams considering temperature effects
-
摘要: 由于混凝土各项性能和水泥水化反应密切相关,因此混凝土热学和力学性能的发展不仅与龄期有关,还与自身温度和温度历程有关,而传统混凝土坝实测应变转换应力计算理论中尚未考虑温度历程的影响,这导致转换获得的拉应力并非真实应力。基于等效龄期理论与变形法基本原理,推导了考虑温度历程的实测应变转换应力公式,并给出了考虑温度历程的实测应变转换应力计算步骤;结合西北地区典型混凝土坝对比分析了考虑温度历程及不考虑温度历程的转换应力,分析表明,西北寒冷地区的典型混凝土坝温度范围为6.4~37.0 ℃,考虑温度历程的拉应力与不考虑温度历程的最大差值为0.49 MPa,且差值峰值出现在早龄期,此时混凝土强度尚未充分发展,若不考虑温度历程影响,则无法进行准确的安全评价。Abstract: Since the performance of concrete is closely related to the cement hydration reaction, the development of the thermal and mechanical properties of concrete is not only related to the age, but also associated with its temperature and temperature history. The influences of the temperature history on the transition from the measured strain to stress are not considered in the traditional theories, which results in an unreal calculated stress. In this paper, the transitional formula from the measured strain to stress in consideration of the temperature process is deduced based on the theory of equivalent age and a deformation method, and the calculation steps are also designed. Based on a typical concrete dam project located in the northwest region, the applicability of the algorithm in this study is verified. Analysis results show that the temperature range is from 6.4 ℃ to 37.0 ℃ in the northwest typical concrete dams, The maximum stress difference is 0.049 MPa whether considering the influences of temperature, so the influences of temperature should not be neglected in this situation. The peak value of the stress differences appears in the early age, and the concrete strength has not yet fully developed at this time. Without considering the influences of the temperature history, an accurate safety assessment can not be carried out for concrete dams.
-
Key words:
- concrete dam /
- measured strain /
- temperature process /
- equivalent age /
- stress evaluation
-
表 1 混凝土材料配合比
Table 1. Proportion of concrete material
强度等级 级配 水胶比 水泥/
(kg·m-3)水量/
(kg·m-3)粉煤灰/
(kg·m-3)砂/
(kg·m-3)粗骨料/
(kg·m-3)减水剂 引气剂 大石 中石 小石 R18020 三 0.53 65 90 105 578 449 599 449 1.528 0.102 -
[1] 梅塔P K, 蒙特罗P J M. 混凝土: 微观结构、性能与材料[M]. 覃维祖, 王栋民, 丁建彤, 译. 北京: 中国电力出版社, 2008. MEHTA P K, MONTEIRO P J M.Concrete microstructure, properties and materials[M]. Translated by TAN Weizu, WANG Dongmin, DING Jiantong, et al. Beijing: China Electric Power Press, 2008.(in Chinese) [2] 丁建彤, 陈波, 蔡跃波.温度历程对早龄期混凝土抗裂性的影响[J].江苏大学学报(自然科学版), 2011, 32(2): 236-240. http://www.cqvip.com/QK/94803B/201102/37068939.html DING Jiantong, CHEN Bo, CAI Yuebo. Influence of temperature history on crack resistance of early age concrete[J]. Journal of Jiangsu University (Natural Science Edition), 2011, 32(2): 236-240.(in Chinese) http://www.cqvip.com/QK/94803B/201102/37068939.html [3] 王甲春, 阎培渝.温度历程对早龄期混凝土抗压强度的影响[J].西北农林科技大学学报(自然科学版), 2014, 42(7): 228-234. http://www.cqvip.com/QK/90760A/201407/88667889504849524855485154.html WANG Jiachun, YAN Peiyu. Influence of temperature history on compressive strength of early age concrete[J]. Journal of Northwest A & F University (Natural Science Edition), 2014, 42(7): 228-234.(in Chinese) http://www.cqvip.com/QK/90760A/201407/88667889504849524855485154.html [4] KIM J K, MOON Y H. Compressive strength development of concrete with different curing time and temperature[J]. Cement and Concrete Research, 1998, 28(12): 1761-1773. doi: 10.1016/S0008-8846(98)00164-1 [5] KIM J K. Estimation of compressive strength by a new apparent activation energy function[J]. Cement and Concrete Research, 2003, 33(7): 965-971. doi: 10.1016/S0008-8846(03)00007-3 [6] KIM J K. Effect of temperature and aging on the mechanical properties of concrete: Part Ⅱ. prediction model[J]. Cement and Concrete Research, 2002, 32(7): 1095-1100. doi: 10.1016/S0008-8846(02)00745-7 [7] ZHAO Qingxin, LIU Xiaochen, JIANG Jinyang. Effect of curingtemperature on creep behavior of fly ash concrete[J]. Construction and Building Materials, 2015, 96: 326-333. doi: 10.1016/j.conbuildmat.2015.08.030 [8] 张岫文, 叶列平, 吴佩刚.基于成熟度的大体积混凝土早期温度应力场有限元分析[J].建筑结构, 2005, 35(1): 68-71. http://www.cqvip.com/QK/90571X/2005001/11709904.html ZHANG Xiuwen, YE Lieping, WU Peigang. Finite element analysis on thermal stress in mass concrete at early ages with maturity method[J]. Journal of Building Structure, 2005, 35(1): 68-71.(in Chinese) http://www.cqvip.com/QK/90571X/2005001/11709904.html [9] 金贤玉, 田野, 金南国.混凝土早龄期性能与裂缝控制[J].建筑结构学报, 2010, 31(6): 204-212. https://www.wenkuxiazai.com/doc/d7a9156e58fafab069dc02b2-2.html JIN Xianyu, TIAN Ye, JIN Nanguo. Early age properties and cracking control of concrete[J]. Journal of Building Structure, 2010, 31(6): 204-212.(in Chinese) https://www.wenkuxiazai.com/doc/d7a9156e58fafab069dc02b2-2.html [10] 储海宁.关于高混凝土坝应力应变监测的几个问题——兼评安全监测规范的有关规定[J].大坝与安全, 2009(2): 29-37. CHU Haining. Several issues on stress and strain monitoring of high concrete dams-discussion on some specification in safety monitoring norm[J]. Journal of Dam and Safety, 2009(2): 29-37.(in Chinese) [11] 储海宁.混凝土坝内部观测技术[M].北京:水利电力出版社, 1989. CHU Haining. Inside observation technology of concrete dam[M]. Beijing: China Electric Power Press, 1989.(in Chinese) [12] 吴中如.水工建筑物安全监控理论及其应用[M].北京:高等教育出版社, 2003. WU Zhongru. Safety monitoring theory & its application of hydraulic structure[M]. Beijing: Higher Education Press, 2003.(in Chinese) [13] 黄国兴, 惠荣炎, 王秀军.混凝土徐变与收缩[M].北京:中国电力出版社, 2011. HUANG Guoxing, HUI Rongyan, WANG Xiujun. The creep and shrinkage of concrete[M]. Beijing: China Electric Power Press, 2011.(in Chinese) [14] GEERT D S. Applicability of degree of hydration concept and maturity method for thermo-visco-elastic behaviour of early age concrete[J]. Cement and Concrete Composites, 2004, 26(5): 437-443. doi: 10.1016/S0958-9465(03)00067-2 [15] 张子明, 周红军, 殷波.基于等效时间的混凝土徐变[J].河海大学学报(自然科学版), 2005, 33(2): 173-176. http://www.cqvip.com/QK/91502X/200502/15334091.html ZHANG Ziming, ZHOU Hongjun, YIN Bo. Equivalent time-based concrete creep[J]. Journal of Hohai University(Natural Science Edition), 2005, 33(2): 173-176.(in Chinese) http://www.cqvip.com/QK/91502X/200502/15334091.html [16] 黄耀英, 郑宏, 周宜红, 等.基于小概率事件法估计大坝混凝土实际抗拉强度[J].武汉理工大学学报, 2012, 34(3): 86-90. http://www.oalib.com/paper/5180737 HUANG Yaoying, ZHENG Hong, ZHOU Yihong, et al. Estimation of actual tensile strength of dam concrete based on small probability event method[J]. Journal of Wuhan University of Technology, 2012, 34(3): 86-90.(in Chinese) http://www.oalib.com/paper/5180737 -