Seepage pressure control measures for lining of deep buried hydraulic tunnels
-
摘要: 我国西部高山峡谷地区水电站工程地下水位高, 深埋水工隧洞衬砌外水压力大, 防渗排水措施要求高。为减小作用于衬砌上的外水压力, 提高衬砌结构的安全性和经济性, 同时减小排水对地下环境的影响, 需要采取合理的围岩防渗排水措施。结合某在建水电站工程, 拟采用固结灌浆、排水孔等防渗排水措施, 建立泄洪洞的三维有限元模型, 精细模拟固结灌浆和排水孔作用, 研究不同方案下隧洞围岩浸润面变化和衬砌所受渗透压力分布规律。结果表明:泄洪洞深部固结灌浆可大幅减少围岩地下水内渗, 有效降低对地下水位的影响, 有利于生态环境保护;排水孔的排水降压作用显著, 可有效减小衬砌所受外水压力。若需兼顾考虑地下水环境影响及有效减小衬砌所受外水压力时, 可采用深固结灌浆联合浅排水孔的处理方案, 且建议固结灌浆范围为5~8 m, 排水孔深度1~2 m。Abstract: Groundwater levels of hydropower stations are relatively high in the western alpine gorge area. The external water pressure on the lining of deep buried hydraulic tunnel is larger. So the anti-seepage and drainage measures should be demanded strictly. In order to reduce the seepage pressure and the drainage effect on the underground environment as well as to improve the safety and economy of lining structures, it is necessary to take some effective anti-seepage and drainage measures for surrounding rocks. For a hydropower station under construction, the consolidation grouting and the drainage hole are considered as the anti-seepage and drainage measures respectively. Then, a three-dimensional finite element model of spillway tunnel is established, which can finely simulate the consolidation grouting and the drainage hole. The phreatic surface changing rule of surrounding rocks for the tunnel and the seepage pressure distribution of the lining structure are analyzed. Results show that the seepage discharge from wall rock to tunnel and the influence of drainage on underground water level would decrease if the consolidation grouting is adopted. The consolidation grouting is beneficial for to the environmental protection. In addition, the effects of drainage hole can reduce the seepage pressure on the tunnel lining remarkably. When the influence of drainage on the groundwater environment and the effect of the drainage hole are both taken into account, the treatment scheme combined with deep consolidation grouting and shallow drain holes is proposed, meanwhile the consolidated grouting area and the drain depth are suggested to be 5~ 8 m and 1~ 2 m respectively.
-
Key words:
- hydraulic tunnel /
- consolidation grouting /
- drainage hole /
- tunnel lining /
- seepage pressure
-
表 1 泄洪洞防渗排水处理方案
Table 1. Anti-seepage treatment scheme for spillway tunnel
方案编号 方案说明 模拟方法 1 围岩仅进行深固结灌浆,灌浆深度8 m 排水孔设置为不透水边界,固结灌浆区域渗透系数取正常系数 2 顶拱仅设置浅排水孔 排水孔设置为出渗边界,固结灌浆区域取周边围岩渗透系数 3 顶拱设置浅排水孔且围岩进行深固结灌浆,灌浆深度8 m 排水孔设置为出渗边界,固结灌浆区域渗透系数取正常系数 4 顶拱设置浅排水孔且围岩进行深固结灌浆,灌浆深度5 m 排水孔设置为出渗边界,固结灌浆区域渗透系数取正常系数 -
[1] 信春雷. 不同防排水模式对山岭隧道衬砌水压力影响关系研究[D]. 成都: 西南交通大学, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10613-1012391748.htm XIN Chunlei. Study on the impact of different waterproof and drainage patterns upon water pressure load on mountain tunnel lining[D]. Chengdu: Southwest Jiaotong University, 2011. (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10613-1012391748.htm [2] 班宏泰, 刘昌军, 丁留谦, 等.深埋地下管道及地下洞室群三维渗流场的有限元精细模拟[J].水利水电技术, 2012, 43(9): 33-38. http://d.old.wanfangdata.com.cn/Periodical/slsdjs201209010 BAN Hongtai, LIU Changjun, DING Liuqian, et al. Precise finite element simulation on 3-D seepage field of deep-embedded underground pipelines and underground cavern group[J]. Water Resources and Hydropower Engineering, 2012, 43(9): 33-38. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/slsdjs201209010 [3] 李岩松, 陈寿根, 周泽林.固结灌浆前、后引水隧洞衬砌力学行为研究[J].水利与建筑工程学报, 2014, 12(2): 193-198. http://d.wanfangdata.com.cn/Periodical_fsjs201402039.aspx LI Yansong, CHEN Shougen, ZHOU Zelin. Mechanical behaviors of water diversion tunnel lining before and after consolidation grouting[J]. Journal of Water Resources and Architectural Engineering, 2014, 12(2): 193-198. (in Chinese) http://d.wanfangdata.com.cn/Periodical_fsjs201402039.aspx [4] 朱伯芳, 李玥, 张国新.渗流场中排水孔直径、间距及深度对排水效果的影响[J].水利水电技术, 2008, 39(3): 27-29. http://www.doc88.com/p-0929082148934.html ZHU Bofang, LI Yue, ZHANG Guoxin. The influences of the diameter, spacing and depth of drain holes on the effect of draining in the seepage field[J]. Water Resources and Hydropower Engineering, 2008, 39(3): 27-29. (in Chinese) http://www.doc88.com/p-0929082148934.html [5] 简文彬, 张登, 许旭堂.基于波速测试的裂隙岩体固结灌浆效果分析[J].岩土力学, 2014, 35(7): 1945-1949. http://d.wanfangdata.com.cn/Periodical_ytlx201407019.aspx JIAN Wenbin, ZHANG Deng, XU Xutang. Analysis of consolidation grouting effect of fractured rock mass based on wave velocity test[J]. Rock and Soil Mechanics, 35(7): 1945-1949. (in Chinese) http://d.wanfangdata.com.cn/Periodical_ytlx201407019.aspx [6] 张巍, 陈云长, 黄立财, 等.高压隧洞内水外渗三维有限元分析与渗透稳定性研究[J].水利与建筑工程学报, 2015, 13(5): 212-217. http://d.old.wanfangdata.com.cn/Periodical/fsjs201505042 ZHANG Wei, CHEN Yunchang, HUANG Licai, et al. 3D finite element analysis of seepage from a high pressure tunnel and study on its permeation stability[J]. Journal of Water Resources and Architectural Engineering, 2015, 13(5): 212-217. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fsjs201505042 [7] 沈振中, 倪治斌, 赵坚.水工洞室围岩稳定性的非连续变形分析[J].岩石力学与工程学报, 2003, 22(增刊1): 2299-2303. http://d.wanfangdata.com.cn/Periodical_yslxygcxb2003z1037.aspx SHEN Zhenzhong, NI Zhibin, ZHAO Jian. Stability analysis of rock mass for underground hydraulic powerhouse by DDA[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(Suppl1): 2299-2303. (in Chinese) http://d.wanfangdata.com.cn/Periodical_yslxygcxb2003z1037.aspx [8] 沈振中, 张鑫, 陆希, 等.西藏老虎嘴水电站左岸渗流控制优化[J].水利学报, 2006, 37(10): 1230-1234. doi: 10.3321/j.issn:0559-9350.2006.10.013 SHEN Zhenzhong, ZHANG Xin, LU Xi, et al. Seepage control optimization of left bank of Laohuzui hydropower station[J]. Journal of Hydraulic Engineering, 2006, 37(10): 1230-1234. (in Chinese) doi: 10.3321/j.issn:0559-9350.2006.10.013 [9] 周人杰, 沈振中, 徐力群, 等.基于三维非稳定渗流分析的隧洞开挖地下水环境影响评价[J].南水北调与水利科技, 2016, 14(6): 135-140. http://d.old.wanfangdata.com.cn/Periodical/nsbdyslkj201606023 ZHOU Renjie, SHEN Zhenzhong, XU Liqun, et al. Effect of tunnel excavation on groundwater environment based on three-dimensional unsteady seepage flow analysis[J]. South-to-North Water Transfers and Water Science & Technology, 2016, 14(6): 135-140. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/nsbdyslkj201606023 [10] 王连广, 刘阳.引水隧洞三维渗流场分析研究[J].水利规划与设计, 2014(4): 52-54. http://d.old.wanfangdata.com.cn/Periodical/slghysj201404016 WANG Lianguang, LIU Yang. Analysis of three-dimensional seepage field at diversion tunnel[J]. Water Resources Planning and Design, 2014(4): 52-54. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/slghysj201404016 [11] 任华春, 沈振中, 张耀祖.地下厂房围岩稳定性分析及支护方案优化[J].水电能源科学, 2010, 28(4): 96-99. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=sdny201004032&dbname=CJFD&dbcode=CJFQ REN Huachun, SHEN Zhenzhong, ZHANG Yaozu. Stability analysis and reinforcement scheme optimization of surrounding rock for underground powerhouse[J]. Water Resources and Power, 2010, 28(4): 96-99. (in Chinese) http://kns.cnki.net/KCMS/detail/detail.aspx?filename=sdny201004032&dbname=CJFD&dbcode=CJFQ [12] 王东, 沈振中, 陶小虎.尾矿坝渗流场三维有限元分析与安全评价[J].河海大学学报(自然科学版), 2012, 40(3): 307-312. http://www.cnki.com.cn/Article/CJFDTOTAL-SDNY201708022.htm WANG Dong, SHEN Zhenzhong, TAO Xiaohu. Three-dimensional finite element analysis and safety assessment for seepage field of a tailing dam[J]. Journal of Hohai University(Natural Science), 2012, 40(3): 307-312. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-SDNY201708022.htm [13] 刘干斌, 谢康和, 施祖元, 等.压力隧洞衬砌-围岩(土)相互作用研究[J].岩石力学与工程学报, 2005, 24(14): 2449-2455. doi: 10.3321/j.issn:1000-6915.2005.14.008 LIU Ganbin, XIE Kanghe, SHI Zuyuan, et al. Interaction of surrounding rock or soil and lining of a pressure tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(14): 2449-2455. (in Chinese) doi: 10.3321/j.issn:1000-6915.2005.14.008 [14] 白明洲, 陈云, 师海.山岭隧道施工诱发地下水位下降环境风险评价[J].铁道工程学报, 2016(1): 5-10, 15. http://d.old.wanfangdata.com.cn/Periodical/tdgcxb201601002 BAI Mingzhou, CHEN Yun, SHI Hai. Environmental risk assessment of underground water level falling induced by construction in mountain tunnel[J]. Journal of Railway Engineering Society, 2016(1): 5-10, 15. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/tdgcxb201601002 [15] 苏凯, 伍鹤皋.水工隧洞内水外渗耦合分析[J].岩土力学, 2009, 30(4): 1147-1152. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx200904050 SU Kai, WU Hegao. Analysis of hydro-mechanical interaction in hydraulic tunnel with inner water exosmosis[J]. Rock and Soil Mechanics, 2009, 30(4): 1147-1152. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx200904050 -