Reaction degree and morphology of cement-lithium slag slurry using different curing methods
-
摘要: 锂渣反应程度对锂渣混凝土性能的影响较大,为此,采用盐酸溶解法测试水泥-锂渣浆体中锂渣的反应程度,通过电镜扫描和能谱研究水泥-锂渣砂浆的孔结构和水化产物,并探讨养护条件(标准养护、热养护、碱激发、碱激发和热养护)对上述指标的影响。结果表明:锂渣复合胶凝材料中锂渣的反应程度随龄期的延长而增大,养护条件的改变也能促进锂渣反应程度的增长,相对而言,碱激发和热养护的促进作用>碱激发>热养护>标准养护;同时,锂渣的掺入或养护条件的改变都会改变砂浆的孔径分布,达到细化孔结构和改变浆体中水化产物含量的目的。因此,养护条件的改变能促进锂渣反应程度的提高和细化浆体的微观结构。Abstract: Performance of lithium slag concrete is affected greatly by the reaction degree of lithium slag. For this reason, the reaction degree of lithium slag in cement-lithium slag is tested by HCl solution method. The pore structure of mortar at 3 d is tested by scanning electron microscope(SEM), and hydration products of pure cement mortar and cement-lithium slag at 1-3 d for each curing method are tested by energy-dispersive spectrometer(EDS). Four curing methods (standard curing, heat curing, alkali activated, and composite curing of alkali activated and heat curing) are presented, and their impacts on pore structure and hydration products are discussed. The research results suggest that reaction degree of lithium slag in lithium slag composite cement increases over time, which is lower in early hydration period, especially in 1-3 d. Different curing conditions have different promotion in lithium slag reaction degree. Relatively speaking, the effect of four curing conditions is in the order of composite curing> alkali excitation> heat curing> standard curing. Meanwhile, the incorporation of lithium slag or the change of curing condition will change the distribution of pore diameter, and can refine the pore structure and change the content of hydrated products in the paste. Therefore, the change of curing condition can promote the reaction degree of lithium slag and refine the microstructure of the paste.
-
Key words:
- curing method /
- cement /
- lithium slag /
- reaction degree /
- morphology
-
表 1 基准水泥和锂渣的化学成分
Table 1. Chemical composition of cement and lithium slag
% 样品名称 Loss SiO2 Al2O3 Fe2O3 CaO MgO SO3 Na2Oeq 基准水泥 2.18 25.10 6.38 4.19 54.87 2.61 2.66 0.56 锂渣 7.01 58.54 19.34 1.44 7.34 0.73 6.28 0.43 注:Na2Oeq=Na2O+0.658K2O。 表 2 锂渣复合水泥基材料的配合比
Table 2. Mix of lithium slag composite binder
试样编号 水胶比 锂渣复合水泥基材料的组成/% 基准水泥 锂渣 LB0 0.40 100 0 LB1 80 20 LB2 60 40 LB3 40 60 LD0 0.30 100 0 LD1 80 20 LD2 60 40 LD3 40 60 注:标准养护时编号为LB0~LB3和LD0~LD3;热(50 ℃)养护时,在LB1~LB3和LD1~LD3后加上“5”; 碱激发时,在LB1~LB3和LD1~LD3后加上“p”; 复合激发时,在LB1~LB3和LD1~LD3后加上“5p”。下同。 表 3 标养下锂渣的反应程度
Table 3. Reaction degree of lithium slag under standard curing
% 编号 龄期/d 1 3 7 28 60 90 LB0 25.62 — 55.81 68.97 75.63 78.83 LB1 1.70 2.49 5.12 8.40 12.34 15.42 LB2 0.90 1.30 2.71 5.40 9.65 12.11 LB3 0.42 0.70 2.01 4.10 7.41 9.76 LD0 23.50 — 51.62 64.31 70.17 73.44 LD1 1.20 2.96 5.10 7.80 10.20 11.35 LD2 0.60 1.30 2.80 5.10 7.90 10.57 LD3 0.23 0.50 1.45 2.90 4.10 8.10 表 4 热养护下锂渣的反应程度
Table 4. Reaction degree of lithium slag under high temperature curing
% 编号 龄期/d 1 3 7 28 60 90 LB15 7.12 9.01 9.32 10.89 13.34 15.62 LB25 2.71 3.44 5.11 8.40 10.45 12.11 LB35 0.68 1.05 2.41 4.21 8.41 10.76 LD15 6.20 7.70 8.40 9.80 12.20 13.00 LD25 2.60 3.31 5.00 7.80 9.90 11.30 LD35 0.60 1.01 2.30 3.90 8.10 10.00 表 5 碱激发下锂渣的反应程度
Table 5. Reaction degree of lithium slag under alkali activated
% 编号 龄期/d 1 3 7 28 60 90 LB1p 7.82 9.87 10.22 11.36 13.92 15.90 LB3p 0.75 1.17 2.67 4.44 8.92 11.06 LD1p 6.90 8.20 8.99 10.29 12.86 13.59 LD3p 0.74 1.21 2.60 4.28 8.29 10.38 表 6 复合作用下锂渣的反应程度
Table 6. Reaction degree of lithium slag under alkali activated and high temperature curing
% 编号 龄期/d 1 3 7 28 60 90 LB15p 7.82 9.92 10.42 11.46 13.96 16.88 LB35p 1.18 1.96 3.83 4.99 9.67 11.79 LD15p 6.99 8.90 9.47 10.88 13.44 14.65 LD35p 0.89 1.35 3.46 4.56 8.41 11.46 -
[1] 郑克仁, 孙伟, 贾艳涛, 等.水泥-矿渣-粉煤灰体系中矿渣和粉煤灰反应程度测定方法[J].东南大学学报(自然科学版), 2004, 43(3): 361-364. doi: 10.3969/j.issn.1001-0505.2004.03.018 ZHENG Keren, SUN Wei, JIA Yantao, et al. Method to determine reaction degrees of constituents in hydrating ternary blends composed of BFS, FA and Portland cement[J]. Journal of Southeast University (Natural Science Edition), 2004, 43(3): 361-364. (in Chinese) doi: 10.3969/j.issn.1001-0505.2004.03.018 [2] 姚武, 吴梦雪, 魏永起.三元复合胶凝体系中硅灰和粉煤灰反应程度的确定[J].材料研究学报, 2014, 28(3): 197-203. doi: 10.11901/1005.3093.2013.480 YAO Wu, WU Mengxue, WEI Yongqi. Determination of reaction degree of silica fume and fly ash in a cement-silica fume-fly ash ternary cementitious system[J]. Chinese Journal of Materials Research, 2014, 28(3): 197-203. (in Chinese) doi: 10.11901/1005.3093.2013.480 [3] LANGAN B W, WENG K, WARD M A. Effect of silica fume and fly ash on heat of hydration of Portland cement[J]. Cem Concr Res, 2002(32): 1045-1051. https://www.sciencedirect.com/science/article/pii/S0008884602007421 [4] 阎培渝.粉煤灰在复合胶凝材料水化过程中的作用机理[J].硅酸盐学报, 2007, 35(增刊1): 167-174. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-EUGQ200509002041.htm YAN Peiyu. Mechanism of fly ash's effects during hydration process of composite binder[J]. Journal of the Chinese Ceramic Society, 2007, 35(Suppl1): 167-174. (in Chinese) http://cpfd.cnki.com.cn/Article/CPFDTOTAL-EUGQ200509002041.htm [5] 吴福飞, 董双快, 宫经伟, 等.含掺合料混凝土水化产物体积分数计算及其影响因素[J].农业工程学报, 2016, 32(3): 48-54. doi: 10.11975/j.issn.1002-6819.2016.03.008 WU Fufei, DONG Shuangkuai, GONG Jingwei, et al. Calculation of concrete with mineral admixture hydration products volume fraction and its influential factors[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(3): 48-54. (in Chinese) doi: 10.11975/j.issn.1002-6819.2016.03.008 [6] 张云升, 孙伟, 郑克仁, 等.水泥-粉煤灰浆体的水化反应进程[J].东南大学学报(自然科学版), 2006, 36(1): 118-123. doi: 10.3969/j.issn.1001-0505.2006.01.024 ZHANG Yunsheng, SUN Wei, ZHENG Keren, et al. Hydration process of Portland cement-fly ash pastes[J]. Journal of Southeast University (Natural Science Edition), 2006, 36(1): 118-123. (in Chinese) doi: 10.3969/j.issn.1001-0505.2006.01.024 [7] WU Fufei, SHI Kebin, DONG Shuangkuai. Influence of concrete with lithium-slag and steel slag by early curing conditions[J]. Key Engineering Materials, 2014(599): 52-55. https://www.scientific.net/KEM.599.52 [8] 张兰芳.高性能锂渣混凝土的试验研究[J].辽宁工程技术大学学报, 2007, 26(6): 877-880. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lngcjsdxxb200706025 ZHANG Lanfang. Experiment study on high-performance lithium-slag concrete[J]. Journal of Liaoning Technical University, 2007, 26(6): 877-880. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lngcjsdxxb200706025 [9] 吴福飞, 侍克斌, 董双快, 等.掺合料和水胶比对水泥基材料水化产物和力学性能的影响[J].农业工程学报, 2016, 32(4): 119-126. doi: 10.11975/j.issn.1002-6819.2016.04.017 WU Fufei, SHI Kebin, DONG Shuangkuai, et al. Influence of admixture and water-cement ratio on hydration products and mechanical properties of cement-based materials[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(4): 119-126. (in Chinese) doi: 10.11975/j.issn.1002-6819.2016.04.017 [10] 张善德. 锂渣高性能混凝土强度预测及圆环法早期抗裂性试验研究[D]. 乌鲁木齐: 新疆农业大学, 2011. ZHANG Shande. Forecasting of lithium-slag high-performance concrete strength and ring method test on its early-age anti-crack capability[D]. Urumqi: Xinjiang Agricultural University, 2011. (in Chinese) [11] 史才军.碱-激发水泥和混凝土[M].北京:化学工业出版社, 2008: 38-43. SHI Caijun. Alkali activated cement concrete[M]. Beijing: The Press of Chemistry, 2008: 38-43. (in Chinese) [12] 阎培渝, 王强.高温养护对钢渣复合胶凝材料早期水化性能的影响[J].清华大学学报(自然科学版), 2009, 49(6): 790-793. http://www.cqvip.com/QK/93884X/200906/30592160.html YAN Peiyu, WANG Qiang. Effect of high temperature curing on the early hydration characteristics of a complex binder containing steel slag[J]. J Tsinghua Univ(Sci & Tech), 2009, 49(6): 790-793. (in Chinese) http://www.cqvip.com/QK/93884X/200906/30592160.html [13] LIU Rengguang, DING Shidong, YAN Peiyu. The microstructure of hardened Portland cement-slag complex binder pastes cured under two different curing conditions[J]. Journal of the Chinese Ceramic Society, 2015, 43(5): 610-618. https://www.sciencedirect.com/science/article/pii/S0950061811005307 [14] ANGELES G, RUTH N, ANTONIO J M, et al. Crystal structure of low magnesium-content alite: application to rietveld quantitative phase analysis[J]. Cem Concr Res, 2008(38): 1261-1269. https://www.sciencedirect.com/science/article/pii/S0008884608001403 [15] 吴福飞. 锂渣复合胶凝材料的水化特性及硬化混凝土的性能研究[D]. 乌鲁木齐: 新疆农业大学, 2016. WU Fufei. Study on hydration characteristics of complex binder containing lithium slag and properties of hardened concrete[D]. Urumqi: Xinjiang Agricultural University, 2016. (in Chinese) -