Response laws of pore structure and matrix suction of slip zone soils under action of wetting-drying cycles
-
摘要: 非饱和土基质吸力与其微观孔隙结构息息相关。为探究在干湿循环作用下滑带土孔隙结构与基质吸力的响应规律, 以重塑黄土坡滑坡滑带土为研究对象, 采用压汞法分析干湿循环过程中孔隙大小分布规律, 得到不同干湿循环次数下滑带土孔隙分布曲线。在此基础上, 结合分形原理, 将滑带土孔隙划分成三类(大孔隙、中孔隙和小孔隙); 结合毛细管模型, 间接推算出滑带土的土-水特征曲线(SWCC)。研究结果表明:反复干湿循环作用使小孔隙逐渐转化成大孔隙, 颗粒孔隙转化成团粒孔隙; 不同干湿循环次数对应的土-水特征曲线均存在一个共同的拐点, 拐点上侧, 含水率相同时, 随着干湿循环次数增加, 基质吸力逐渐增大, 下侧反之。研究成果有利于深入了解滑带土的干湿循环效应, 可用于库岸滑坡演化机理研究。Abstract: The matrix suction in the unsaturatedsoil is closely related to its micro pore structure.In order to analyze the response laws of the pore structure and matrix suction of the slip zone soil under the actions of the wetting-drying cycles, the remolded slip soil of Huangtupo Iandslide was taken as the research case history.Further, a mercury intrusion porosimetry (MIP) tests are carried out to study the changes in pore size distribution during the wetting-drying cycles and the pore size distribution curves for different cycles have been got.On this basis, the pore of slip soil is classified into three type (large pores, medium pores, and small pores) using the fractal theory, and the soil-water characteristic curves of the slip zone soil is indirectly calculated (SWCC) using the capillary model.The research results show that under repeated wetting-drying cycles, some small pores gradually transformed into large pores, and some particle pores changed into aggregate pores.The curves had a common inflection point, and above the inflection point the matrix suction under the same water content gradually increases with the increase in cycle numbers, however, the opposite behavior was noted below the inflection point.Hence, the results obtained from this research can be helpful in comprehensively understanding the wetting-drying effects of the slip soil, which is of great significant and can be applied to research on the evolution mechanism of reservoir bank landslides.
-
表 1 滑带土基本物理性质
Table 1. Basic physical property parameters of Huangtupo slip zone soils
天然密度/(g·cm-3) 干密度/(g·cm-3) 饱和含水率/% 天然含水率/% 饱和度/% 液限/% 塑限/% 塑性指数 液性指数 2.03 1.79 20.95 15.97 75.5 25.95 13.86 12.09 0.17 表 2 各区间孔隙体积百分比
Table 2. Percentage of pore volume in each interval
孔隙类型 干湿循环次数/次 0 1 2 3 4 小孔隙 67.3 65.4 65.9 63.8 60.3 中孔隙 8.7 9.2 11.4 11.3 9.3 大孔隙 24.0 25.4 22.7 24.9 30.4 表 3 特定含水率下基质吸力与循环次数的关系
Table 3. Relationship between matric suction and cycle numbers at given water contents
含水率/% 不同干湿循环次数下的吸力/kPa 0 1 2 3 4 18.00 7.3 11.63 16.5 37.1 41.5 15.97 89.7 108.6 183.0 244.6 251.7 13.86 444.0 463.0 520.0 602.8 583.9 表 4 SWCC(Van Genuchten方程)参数拟合值
Table 4. Fitting results of SWCC by Van Genuchten equation
循环次数/次 饱和含水率/% 残余含水率/% a b c R2 0 19.03 5.62 3.7×10-11 0.468 2 148.181 0.988 1 19.40 5.34 1.0×10-10 0.477 1 648.450 0.990 2 19.90 4.87 1.7×10-10 0.520 2 376.940 0.993 3 20.35 5.08 4.9×10-10 0.535 1 712.575 0.994 4 21.20 4.26 9.2×10-12 0.434 2 520.875 0.986 -
[1] 李晓, 梁收运, 郑国东.滑带土的研究进展[J].地球科学进展, 2010, 25(5):484- 491. http://www.oalib.com/paper/4368999 LI Xiao, LIANG Shouyun, ZHENG Guodong.Progresses in sliding zone soil of landslides[J].Advances in Earth Science, 2010, 25(5):484- 491.(in Chinese) http://www.oalib.com/paper/4368999 [2] 曹玲, 罗先启.三峡库区千将坪滑坡滑带土干-湿循环条件下强度特性试验研究[J].岩土力学, 2007, 28(增刊1):93- 97. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-AGLU200710007020.htm CAO Ling, LUO Xianqi.Experimental study of dry-wet circulation of Qianjiangping landslide's unsaturated soil[J].Rock and Soil Mechanics, 2007, 28(Suppl1):93- 97.(in Chinese) http://cpfd.cnki.com.cn/Article/CPFDTOTAL-AGLU200710007020.htm [3] JIAO Y Y, SONG L, TANG H M, et al.Material weakening of slip zone soils induced by water level fluctuation in the ancient landslides of Three Gorges Reservoir[J].Advances in Materials Science and Engineering, 2014, 2014(2):1- 9. https://www.hindawi.com/journals/amse/2014/202340/tab2/ [4] 董金玉, 赵志强, 杨继红, 等.干湿循环作用下滑带土的变形演化和强度参数弱化试验研究[J].四川大学学报(工程科学版), 2016, 48(增刊2):1- 7. http://mall.cnki.net/magazine/magadetail/SCLH2016S2.htm DONG Jinyu, ZHAO Zhiqiang, YANG Jihong, et al.Research on the deformation evolution and the strength weaking of slip soil under wetting-drying cycle[J].Journal of Sichuan University (Engineering Science Edition), 2016, 48(Suppl2):1- 7.(in Chinese) http://mall.cnki.net/magazine/magadetail/SCLH2016S2.htm [5] 曾召田, 吕海波, 赵艳林, 等.膨胀土干湿循环过程孔径分布试验研究及其应用[J].岩土力学, 2013, 34(2):322- 328. http://www.oalib.com/paper/5021133 ZENG Zhaotian, LYU Haibo, ZHAO Yanlin, et al.Study of pore size distribution of expansive soil during wetting-drying cycle and its application[J].Rock and Soil Mechanics, 2013, 34(2):322- 328.(in Chinese) http://www.oalib.com/paper/5021133 [6] 张英, 邴慧, 杨成松.基于SEM和MIP的冻融循环对粉质黏土强度影响机制研究[J].岩石力学与工程学报, 2015, 34(增刊1):3597- 3603. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=yslx2015s1122&dbname=CJFD&dbcode=CJFQ ZHANG Ying, BING Hui, YANG Chengsong.Influences of freeze-thaw cycles on mechanical properties of silty clay based on SEM and MIP test[J].Chinese Journal of Rock Mechanics and Engineering, 2015, 34(Suppl1):3597- 3603.(in Chinese) http://kns.cnki.net/KCMS/detail/detail.aspx?filename=yslx2015s1122&dbname=CJFD&dbcode=CJFQ [7] 唐华瑞, 韩灵杰, 王杏杏, 等.基于压汞实验的粘土微孔隙分布特征研究[J].广西大学学报(自然科学版), 2016, 41(1):228- 233. http://www.cqvip.com/QK/91580X/201601/667967922.html TANG Huarui, HAN Lingjie, WANG Xingxing, et al.Study on distribution of clay void based on mercury penetration test[J].Journal of Guangxi University(Natural Science Edition), 2016, 41(1):228- 233.(in Chinese) http://www.cqvip.com/QK/91580X/201601/667967922.html [8] 江东, 王建华, 郑世书.多孔介质孔隙结构的分形维数:测试、解算与意义[J].科技通报, 1999, 15(6):453- 456. http://cdmd.cnki.com.cn/Article/CDMD-10141-1013200111.htm JIANG Dong, WANG Jianhua, ZHENG Shishu.Fractal dimension of porous structure in porous media:test, solution and significance[J].Bulletin of Science and Technology, 1999, 15(6):453- 456.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10141-1013200111.htm [9] XU Xiangming, HE Yurong.Fractal characteristics of stagnic anthrosols and the relationship with soil micro-structure[J].Journal of Integrative Agriculture, 2009, 8(5):605- 612. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnykx-e200905012 [10] 王清, 王剑平.土孔隙的分形几何研究[J].岩土工程学报, 2000, 22(4):496- 498. http://www.cqvip.com/QK/95758X/200004/4412850.html WANG Qing, WANG Jianping.A study on fractal of porosity in the soils[J].Chinese Journal of Geotechnical Engineering, 2000, 22(4):496- 498.(in Chinese) http://www.cqvip.com/QK/95758X/200004/4412850.html [11] 苑晓青, 王清, 孙铁, 等.分级真空预压法加固吹填土过程中孔隙分布特征[J].吉林大学学报(地球科学版), 2012, 42(1):169- 176. http://www.oalib.com/paper/4356048 YUAN Xiaoqing, WANG Qing, SUN Tie, et al.Pore distribution characteristics of dredger fill during hierarchical vacuum preloading[J].Journal of Jilin University (Earth Science Edition), 2012, 42(1):169- 176.(in Chinese) http://www.oalib.com/paper/4356048 [12] KONG L W, TAN L R, RAHARDJO H, et al. A simple method of determining the soil-water characteristic curve indirectly[C]//Asian Conference on Unsaturated Soils, 2000. [13] 张芳枝, 陈晓平.反复干湿循环对非饱和土的力学特性影响研究[J].岩土工程学报, 2010, 32(1):41- 46. http://www.oalib.com/paper/4375439 ZHANG Fangzhi, CHEN Xiaoping.Influence of repeated drying and wetting cycles on mechanical behaviors of unsaturated soil[J].Chinese Journal of Geotechnical Engineering, 2010, 32(1):41- 46.(in Chinese) http://www.oalib.com/paper/4375439 [14] SHEAR D L, OLSEN H W, NELSON K R. Effects of desiccation on the hydraulic conductivity versus void ratio relationship for a natural clay[R]. Transportation research record, NRC, National academy press. Washington D. C., 1993: 1365- 1370. [15] FRIESEN W I, MIKULA R J.Fractal dimensions of coal particles[J].Journal of Colloid and Interface Science, 120(1):263- 271. doi: 10.1016/0021-9797(87)90348-1 [16] 李子文, 林柏泉, 郝志勇, 等.煤体多孔介质孔隙度的分形特征研究[J].采矿与安全工程学报, 2013, 30(3):437- 442. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xasyxyxb201003012 LI Ziwen, LIN Baiquan, HAO Zhiyong, et al.Fractal characteristics of porosity for porous media in coal mass[J].Journal of Mining and Safety Engineering, 2013, 30(3):437- 442.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xasyxyxb201003012 [17] 谭罗荣, 孔令伟.特殊岩土工程土质学[M].北京:科学出版社, 2006. TAN Luorong, KONG Lingwei.Soil science in special geotechnical engineering[M].Beijing:Science Press, 2006.(in Chinese) [18] 谭龙, 韦昌富, 田慧会, 等.土体持水特性及孔隙水分布特性的试验研究[J].工程地质学报, 2017, 25(1):73- 79. https://www.cnki.com.cn/qikan-YTGC201411018.html TAN Long, WEI Changfu, TIAN Huihui, et al.Experimental study on characteristics of pore water distribution and water-holding capacity of soil[J].Journal of Engineering Geology, 2017, 25(1):73- 79.(in Chinese) https://www.cnki.com.cn/qikan-YTGC201411018.html [19] 劳P F.土壤物理化学[M].北京:农业出版社, 1985. LOW P F.Physical chemistry of soil[M].Beijing:Agricultural Press, 1985.(in Chinese) [20] 王菁莪. 黄土坡滑坡滑带土的结构特征与水—力相互作用性质研究[D]. 武汉: 中国地质大学, 2012. WANG Jinge. Study on structure and hydro-mechanical properties of sliding zone soil in Huangtupo landslide[D]. Wuhan: China University of Geoscience, 2012. (in Chinese) -