Experimental studies on compressive shear strength and failure criterion of concrete considering rate effect
-
摘要: 利用TAZW-1000大型多功能静动力三轴仪对5种不同加载速率、6种不同法向应力作用下的混凝土进行抗剪试验,分析法向应力和加载速率对混凝土抗剪性能的影响,并基于Bresler-Pister静态强度准则,提出了考虑率效应的混凝土压剪强度准则。研究结果表明:混凝土的剪切强度随法向压力增大呈线性分阶段增大,在一定法向压力范围内剪切强度增幅近似呈直线,然后增幅开始减小;压剪共同作用下混凝土动态抗剪强度提高的主要因素是法向压力的增加,而加载速率对其影响不大。随着法向压力增大,混凝土率效应增强;基于Bresler-Pister静态强度提出的混凝土动态压剪强度准则与试验数据吻合较好,可为动态压剪作用下混凝土强度准则的提出提供参考。Abstract: The shear test studies of concrete under five different loading rates and six different normal stresses are carried out by a dynamic and static three axis apparatus, the effects of stress and loading rate on the shear performance of the concrete are analyzed in this paper. Based on the Bresler-Pister static strength criterion, the shear strength criterion of the concrete considering the rate effect is put forward. The analysis results show that the shear strength of the concrete with the normal pressure increases linearly in stages, within a certain range of the normal compressive stress, the shear strength increases approximately in a straight line, and the magnitude of the increase begins to decrease when the shear strength exceeds a certain range; under the conditions of the compression and shear, the main factor in improving the dynamic shear strength of concrete is the increase of the normal pressure, and the loading rate has a little influence on it. The rate effect of the concrete increases with the increase in the normal pressure; and the dynamic shear strength criterion of the concrete based on the Bresler-Pister quasi static strength is in good agreement with the experimental data, which can provide references for the strength criterion of the concrete under the actions of the dynamic pressures.
-
Key words:
- concrete /
- dynamic performance /
- shear /
- rate effect /
- strength criterion
-
表 1 混凝土剪切强度
Table 1. Shear strength of concrete
加载速率/(mm·min-1) 不同法向应力下的剪应力/MPa 0 MPa 2 MPa 4 MPa 6 MPa 8 MPa 10 MPa 0.18 5.02(-/-) 7.66(52.59 /-) 10.66(112.40/-) 13.26(164.10/-) 15.93(112.40/-) 17.10(240.60/-) 0.90 5.07(-/ 1.00) 7.77(53.25 /1.42) 10.87(114.40/1.97) 13.44(165.10/1.36) 16.10(217.60/1.07) \ 1.80 5.33(-/6.18) 7.95(49.16/3.78) 11.00(106.40/3.19) 13.88(160.40/4.68) 16.85(216.10/5.78) 18.17(240.90/6.26) 9.00 \(-/-) 8.09(-/5.32) 11.22(-/5.25) 14.13(-/1.36) 16.30(-/2.32) \ 18.00 5.51(-/9.76) 8.22(49.18/6.81) 11.41(107.10/7.04) 14.36(160.60/8.30) 17.63(220.00/1.07) 18.97(244.30/10.94) 注:表中括号内“/”前后数值分别为相对于0 MPa增幅(%)和相对于0.18 mm/min的增幅(%)。 表 2 摩擦系数和黏聚力的拟合
Table 2. Fitting parameter of friction coefficients and cohesive force
加载速率/(mm·min-1) 摩擦系数f' 黏聚力c′ 拟合系数R2 0.18 1.371 5.022 0.999 5 0.90 1.387 5.104 0.999 1 1.80 1.448 5.208 0.999 5 9.00 1.510 5.107 0.993 6 18.00 1.519 5.350 0.993 8 表 3 不同加载速率下混凝土抗压强度
Table 3. Compressive strength of concrete under different loading rates
设计强度 尺寸 不同加载速率下的抗压强度/MPa 10-4 s-1 10-3 s-1 5×10-3 s-1 7.5×10-3 s-1 10-2 s-1 C30 300 mm 23.42 25.91 28.42 30.18 30.58 表 4 各加载速率下参数a, b, c计算结果
Table 4. Calculation results of a, b, c parameters under different loading rates
加载速率/(mm·min-1) a b c 0.18 0.084 9 3.792 4 -7.899 2 1.80 0.078 3 3.995 4 -8.447 8 18.00 0.072 2 4.191 2 -8.980 6 表 5 不同工况下的压剪强度
Table 5. Compressive shear strength values under different working conditions
加载速率/(mm·s-1) 不同法向压力下的压剪强度/ MPa 0 MPa 1 MPa 2 MPa 3 MPa 6 MPa 1.97 3.09 4.32 5.44 8.36 0.1 2.05 3.35 4.50 5.58 8.47 2.12 3.67 4.75 5.69 8.62 2.73 4.23 5.13 5.91 9.01 1.0 2.52 4.12 5.02 6.23 9.12 2.37 4.01 5.35 6.45 9.41 3.39 5.09 6.04 6.80 9.84 10.0 3.28 4.88 6.08 6.51 9.66 2.96 4.77 5.99 6.65 9.48 表 6 各参数计算结果
Table 6. Calculation results of each parameter
加载速率/(mm·s-1) a b c 0.1 0.090 4 3.648 8 -7.520 7 1.0 0.106 2 3.753 7 -7.973 1 10.0 0.127 2 4.015 1 -8.950 9 -
[1] 肖建庄, 袁俊强, 李龙.模型再生混凝土单轴受压动态力学特性试验[J].建筑结构学报, 2014, 35(3): 201-207. http://d.old.wanfangdata.com.cn/Periodical/jzjgxb201403026 XIAO Jianzhuang, YUAN Junqinag, LI Long. Experimental study on dynamic mechanical behavior of modeled recycled aggregate concrete under uniaxial compression[J]. Journal of Building Structures, 2014, 35(3): 201-207. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/jzjgxb201403026 [2] SU Y, LI J, WU C, et al. Influences of nano-particles on dynamic strength of ultra-high performance concrete[J]. Composites Part B Engineering, 2016, 91: 595-609. doi: 10.1016/j.compositesb.2016.01.044 [3] CICHOCKI K, DOMSKI J, KATZER J, et al. Static and dynamic characteristics of waste ceramic aggregate fibre reinforced concrete[J]. Transactions of the Všb-Technical University of Ostrava Civil Engineering, 2015, 15(2): 1-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tvsb-2015-0005 [4] 张力伟, 赵颖华, 范颖芳, 等.腐蚀混凝土损伤特征的声发射试验研究.建筑材料学报, 2013, 16(5):763-769. doi: 10.3969/j.issn.1007-9629.2013.05.005 ZHANG Liwei, ZHAO Yinhua, FAN Yinfang, et al. Damage investigation of corroded concrete under compression by AE test. Journal of Building Materials, 2013, 16(5):763-769. (in Chinese) doi: 10.3969/j.issn.1007-9629.2013.05.005 [5] AMIN A, FOSTER S J. Shear strength of steel fibre reinforced concrete beams with stirrups[J]. Engineering Structures, 2016, 111(5): 323-332. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_f984c7e5e412f5d5bb87646564cee4fe [6] JACEK K, DOMSKI J. Static and dynamic characteristics of fibre reinforced WCA concrete[C]//Fibre Concrete, 2015. https://www.researchgate.net/publication/281740334_STATIC_AND_DYNAMIC_CHARACTERISTICS_OF_FIBRE_REINFORCED_WCA_CONCRETE [7] CEIA F, RAPOSO J, GUERRA M, et al. Shear strength of recycled aggregate concrete to natural aggregate concrete interfaces[J]. Construction and Building Materials, 2016, 109: 139-145. doi: 10.1016/j.conbuildmat.2016.02.002 [8] 俞茂宏.混凝土强度理论及其应用[M].北京:高等教育出版社, 2002. YU Maohong. Concrete strength theory and its application[M]. Beijing: Higher Education Press, 2002. (in Chinese) [9] 俞茂宏.强度理论百年总结[J].力学进展, 2004, 34(4): 529-560. doi: 10.3321/j.issn:1000-0992.2004.04.009 YU Maohong. Advances in strength theories for materials under complex stress state in the 20th century[J]. Advances in Mechanics, 2004, 34(4): 529-560. (in Chinese) doi: 10.3321/j.issn:1000-0992.2004.04.009 [10] 过镇海.钢筋混凝土原理[M].北京:清华大学出版社, 2012: 99. GUO Zhenhai. Principle of reinforced concrete[M]. Beijing: Tsinghua University Press, 2012: 99. (in Chinese) [11] 梁兴文.混凝土结构基本原理[M].重庆:重庆大学出版社, 2012: 22. LIANG Xingwen. Basic principles of concrete structure[M]. Chongqing: Chongqing University Press, 2012: 22. (in Chinese) [12] 闻伟.碾压混凝土单轴动态和压剪静态性能试验研究[D].大连: 大连理工大学, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10141-1012394452.htm WEN Wei. Experimental research on properties of RCC under uniaxial dynamic and compression-shear static stress states[D]. Dalian: Dalian University of Technology, 2012. (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10141-1012394452.htm [13] 王怀亮, 田平.动态压剪作用下碾压混凝土强度和变形研究[J].水利与建筑工程学报, 2016, 14(2): 18-24. doi: 10.3969/j.issn.1672-1144.2016.02.004 WANG Huailiang, TIAN Ping. Strength and deformation characteristics of RCC under dynamic compressive-shear loading[J]. Journal of Water Resources and Architectural Engineering, 2016, 14(2): 18-24. (in Chinese) doi: 10.3969/j.issn.1672-1144.2016.02.004 [14] 宋玉普, 闻伟, 王怀亮.碾压混凝土压剪强度分析[J].水利与建筑工程学报, 2012, 10(6): 44-47. doi: 10.3969/j.issn.1672-1144.2012.06.011 SONG Yupu, WEN Wei, WANG Huailiang. Analysis of compression-shear strength of roller compacted concrete[J]. Journal of Water Resources and Architectural Engineering, 2012, 10(6): 44-47. (in Chinese) doi: 10.3969/j.issn.1672-1144.2012.06.011 [15] 李新钟, 魏雪英, 赵均海.混凝土力学性能的应变率效应[J].长安大学学报(自然科学版), 2012, 32(2): 82-86. doi: 10.3969/j.issn.1671-8879.2012.02.015 LI Xinzhong, WEI Xueying, ZHAO Junhai. Strain rate effect on mechanical properties of concrete[J]. Journal of Chang'an University (Natural Science Edition), 2012, 32(2): 82-86. (in Chinese) doi: 10.3969/j.issn.1671-8879.2012.02.015 [16] 周洪涛.混凝土循环加卸载率效应特性研究[D].宜昌: 三峡大学, 2013. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D470827 ZHOU Hongtao. The study of dynamic behavior of concrete by cycle loading and unloading[D]. Yichang: China Three Gorge University, 2013. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D470827 -