Influences of water level on flow velocity distribution during dynamic water exchange in urban artificial lake
-
摘要: 水位和流速是人工湖维持生态的关键因子,为探究人工湖水位对流速分布的影响,基于二维水动力模型对雁鸣湖流场进行数值模拟,研究单因素水位对流速影响和实测换水水位对流速时空分布的影响。结果显示:水位是水动力影响因素之一,低水位时的湖泊流速大于高水位时期,水位变化时的平均流速介于高低水位流速之间,水位对环流影响较小。在实测换水期间,高水位时水位分布无明显差异,水深自上游至下游逐级递增;低水位时水位分布出现差异,河滩裸露,水深分布差异较大;水位变化时,湖泊上游至下游水位呈梯度变化,水深随水位变化;流速时空分布验证了单因素水位对流速的影响,并表明不同水位对流速大小及分布影响有所差异。雁鸣湖水位和流速的模拟结果表明,人工湖水位变化能改善湖泊水动力,可为人工湖水情管理提供科学参考。Abstract: The water level and flow velocity are the key factors in maintaining and improving the ecological environment of the artificial lakes. In order to study and analyze the influences of the water level upon the flow velocity distribution, the numerical simulations of the flow field of the Yanming Lake are carried out based on a two-dimensional hydrodynamic model. And the simulations include the influences of a single-factor water level on the flow velocities and the influences of the measured level of exchanged water on the temporal and spatial distribution of the flow velocities during water level fluctuation. The simulated results indicate that the water level is one of the factors influencing hydrodynamics, and the flow velocity in the Yanming Lake is greater than that during high water level and distribution. In addition, as the water level falls and rises, there is a little influence on the circulation. During the water exchange, there is no obvious difference in the water level distribution in the high water level periods; the water depth increases progressively from the upstream to the downstream. In the low water level periods, the water level distribution is different, the flood plain is exposed, and the water depth distribution varies greatly. When the water level changes, the water level from the upstream to the downstream of the Yanming Lake shows a gradient change, and the water depth varies with the water level; and the spatial and temporal distribution of the flow velocities verifies the impacts of the single-factor water level on the flow velocities, and it is also shown that the different water levels have different effects on the flow velocities and the flow velocity distribution. The numerical simulation analysis results show that the water level of the artificial lakes can improve their hydrodynamics, and can provide scientific references for their regime management.
-
Key words:
- artificial lake /
- numerical simulation /
- water level /
- flow velocity
-
表 1 模拟方案
Table 1. Model simulation schemes
方案 对应现状 水位 流量(0.2 m3/s) 风速和风向 1 3月份正常水位 正常水位(434.5 m) 有进有出 常年主导风(东北风)、平均风速(2 m/s) 2 4月份水位降低 正常水位到低水位过程 无进有出 3 5月份低水位 低水位(433 m) 有进有出 4 6月份水位升高 低水位到正常水位过程 有进无出 注:水位高程基面为国家高程基准。 -
[1] 姚静, 张奇, 李云良, 等.定常风对鄱阳湖水动力的影响[J].湖泊科学, 2016, 28(1): 225-236. http://d.old.wanfangdata.com.cn/Periodical/hpkx201601026 YAO Jing, ZHANG Qi, LI Yunliang, et al. The influence of uniform winds on hydrodynamics of Lake Poyang[J]. Journal of Lake Sciences, 2016, 28(1): 225-236. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/hpkx201601026 [2] 钟小燕, 王船海, 庾从蓉, 等.流速对太湖河道底泥泥沙、营养盐释放规律影响实验研究[J].环境科学学报, 2017, 37(8): 2862-2869. http://d.old.wanfangdata.com.cn/Periodical/hjkxxb201708006 ZHONG Xiaoyan, WANG Chuanhai, YU Congrong, et al. Characteristics of sediments and nutrient release under different flow velocity[J]. Acta Scientiae Circumstantiae, 2017, 37(8): 2862-2869. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/hjkxxb201708006 [3] 姜恒志, 崔雷, 石峰, 等.风场、地形和吞吐流对太湖流场影响的研究[J].水力发电学报, 2013, 32(6): 165-171. http://d.old.wanfangdata.com.cn/Periodical/slfdxb201306027 JIANG Hengzhi, CUI Lei, SHI Feng, et al. Study on influences of wind field, topography and inflow/outflow on flow in Lake Tai[J]. Journal of Hydroelectric Engineering, 2013, 32(6): 165-171. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/slfdxb201306027 [4] NGES A. The effect of extreme water level decrease on hydrochemistry and phytoplankton in a shallow eutrophic lake[J]. Hydrobiologia, 1999, 409: 277-283. doi: 10.1023-A-1017048329234/ [5] COOPS H, BEKLIOGLU M, CRISMAN T L. The role of water-level fluctuations in shallow lake ecosystems-workshop conclusions[J]. Hydrobiologia, 2003, 506-509(1-3): 23-27. doi: 10.1023/B:HYDR.0000008595.14393.77 [6] OPDYKE D. Hydrodynamics and water quality modeling: modeling rivers, lakes, and estuaries[M]. Wiley-Interscience, 2008, 89(39): 366-366. [7] AI Congfang, JIN Sheng, LV Biao. A new fully non-hydrostatic 3D free surface flow model for water wave motions[J]. International Journal for Numerical Methods in Fluids, 2011, 66(11): 1354-1370. doi: 10.1002/fld.v66.11 [8] 郑婷婷, 徐明德, 景胜元, 等.汾河水库水动力及水质数值模拟[J].水利水运工程学报, 2016(3): 105-113. http://slsygcxb.cnjournals.org/ch/reader/view_abstract.aspx?file_no=201603014&flag=1 ZHENG Tingting, XU Mingde, JING Shengyuan, et al. Simulation of hydrodynamics and water quality for Fenhe reservoir[J]. Hydro-Science and Engineering, 2016(3): 105-113. (in Chinese) http://slsygcxb.cnjournals.org/ch/reader/view_abstract.aspx?file_no=201603014&flag=1 [9] WU Z, HE H, CAI Y, et al. Spatial distribution of chlorophyll a and its relationship with the environment during summer in Lake Poyang: a Yangtze-connected lake[J]. Hydrobiologia, 2014, 732(1): 61-70. doi: 10.1007/s10750-014-1844-2 [10] GAO F, FENG M Q, HAN S X, et al. Numerical simulation research on flow characteristics and influential factors of Wuxing Lake[J]. International Journal of Heat and Technology, 2016, 34(1): 80-88. doi: 10.18280/ijht [11] ANDERSON E J, SCHWAB D J. Relationships between wind-driven and hydraulic flow in Lake St. Clair and the St. Clair River Delta[J]. Journal of Great Lakes Research, 2011, 37(1): 147-158. doi: 10.1016/j.jglr.2010.11.007 [12] RAZMI A M, BARRY D A, BAKHTYAR R, et al. Current variability in a wide and open lacustrine embayment in Lake Geneva (Switzerland)[J]. Journal of Great Lakes Research, 2013, 39(3): 455-465. doi: 10.1016/j.jglr.2013.06.011 [13] 刘永, 郭怀成, 周丰, 等.湖泊水位变动对水生植被的影响机理及其调控方法[J].生态学报, 2006, 26(9): 3117-3126. doi: 10.3321/j.issn:1000-0933.2006.09.042 LIU Yong, GUO Huaicheng, ZHOU Feng, et al. Role of water level fluctuation on aquatic vegetation in lakes[J]. Acta Ecologica Sinica, 2006, 26(9): 3117-3126. (in Chinese) doi: 10.3321/j.issn:1000-0933.2006.09.042 [14] 齐凌艳, 黄佳聪, 高俊峰, 等.鄱阳湖枯水水位及流速时空分布模拟[J].长江流域资源与环境, 2017, 26(4): 572-584. doi: 10.11870/cjlyzyyhj201704010 QI Lingyan, HUANG Jiacong, GAO Junfeng, et al. Temporal and spatial simulation of water level and velocity during low water level statistical year in Lake Poyang[J]. Resources and Environment in the Yangtze Basin, 2017, 26(4): 572-584. (in Chinese) doi: 10.11870/cjlyzyyhj201704010 [15] GARCÍA DE EMILIANI M O. Effects of water level fluctuations on phytoplankton in a river-floodplain lake system (Parana River, Argentina)[J]. Hydrobiologia, 1997, 357(1-3): 1-15. doi: 10.1023-A-1003149514670/ [16] 姚鑫, 杨桂山, 万荣荣, 等.水位变化对河流、湖泊湿地植被的影响[J].湖泊科学, 2014, 26(6): 813-821. http://d.old.wanfangdata.com.cn/Periodical/hpkx201406001 YAO Xin, YANG Guishan, WAN Rongrong, et al. Impact of water level change on wetland vegetation of rivers and lakes[J]. Journal of Lake Sciences, 2014, 26(6): 813-821. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/hpkx201406001 [17] LENSSEN J P M, MENTING F B J, PUTTEN W H V D, et al. Effects of sediment type and water level on biomass production of wet land plant species[J]. Aquatic Botany, 1999, 64(2): 151-165. doi: 10.1016/S0304-3770(99)00012-1 [18] HEBB A J, MORTSCH L D, DEADMAN P J, et al. Modeling wetland vegetation community response to water-level change at Long Point, Ontario[J]. Journal of Great Lakes Research, 2013, 39(2): 191-200. doi: 10.1016/j.jglr.2013.02.001 [19] DHI. MIKE 21 Flow model: hydrodynamic module scientific documentation[M]. Denmark: Danish Hydraulic Institute, 2007. [20] 路璐.城市景观湖泊水动力学模拟研究——以西安浐灞雁鸣湖2号湖为例[D].西安: 西安理工大学, 2012. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2118164 LU Lu. Urban landscape lake water dynamics study—Xi'an Chanba Yanming 2nd Lake for example[D]. Xi'an: Xi'an University of Technology, 2012. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2118164 [21] 田泽斌, 王丽婧, 郑丙辉, 等.城陵矶综合枢纽工程建设对洞庭湖水动力影响模拟研究[J].环境科学学报, 2016, 36(5): 1883-1890. http://d.old.wanfangdata.com.cn/Periodical/hjkxxb201605048 TIAN Zebin, WANG Lijing, ZHENG Binghui, et al. Impact simulation of the Chenglingji hydraulic project on hydrodynamics of Dongting Lake[J]. Acta Scientiae Circumstantiae, 2016, 36(5): 1883-1890. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/hjkxxb201605048 -