Detection and analysis of chloride ions in marine concrete structures in service
-
摘要: 为了弄清沿海服役混凝土的氯离子质量分数分布规律及影响因素,对江苏连云港码头部分泊位不同区域的氯离子进行了取样检测,分析了浸水时间、所处方位、开裂状态、维修历史等因素对混凝土内氯离子质量分数的影响。分析结果表明:水位变动区混凝土内的氯离子质量分数积累速度最快,且基本随高程增加而增大;开裂位置的氯离子质量分数明显大于相同环境下的非开裂位置;不同方位混凝土经历的光照时间不同,造成其内部氯离子质量分数有一定差异,其中向海侧混凝土内的氯离子质量分数峰值出现在混凝土浅层,背海侧的则出现在混凝土深层;混凝土表面维修后内部氯离子会向表面迁移,造成质量分数峰值出现在试件内部某一深度。Abstract: In order to understand the distribution and influence factors of chloride ions in the marine concrete structures in service, typical berths serving for different time periods in the Lianyungang port were sampled and the chloride ions in the marine concrete structures located in different regions were detected to find the influences of exposure zone, and the impacts of soaking time, locations and directions, cracking state and maintenance history on the chloride ions concentration of the marine concrete were analyzed in this study. The analysis results show that the accumulation rate of the chloride concentration in the concrete structures placed in the water level fluctuation zone is the fastest, which is larger than that in the atmospheric zone, and it increases with the increase of the elevation; the chloride ions mass fraction at the cracking position is obviously larger than that at the uncracked position in the same environment; the chloride ions' ingression rate is also influenced by the orientation which accepts the different illumination time, the peak value of the chloride ions mass fraction of the concrete to the sea side appears in the concrete cover, while the peak value of the chloride ions mass fraction of the back sea side appears in the concrete deep layer. The chloride ions in the concrete will transport from the inner to the surface when the surface layer of the concrete is repaired, which will make the peak value of the chloride profile appear at a certain depth of the concrete specimen.
-
Key words:
- reinforced concrete /
- coastal port /
- durability /
- chloride ions /
- water level fluctuation zone
-
表 1 连云港港区海水及潮位相关数据
Table 1. Data of seawater and tidal level in Lianyungang port
离子类型 浓度/(mg·L-1) 潮位类别 数值/m Cl- 13 111 平均海面 2.94 Ca2- 186 平均潮差 3.39 K- 167 平均大潮高潮位 4.93 Na- 2 369 平均大潮低潮位 -0.86 Mg2- 476 平均小潮高潮位 4.61 SO42- 419 平均小潮低潮位 1.79 表 2 4号泊位取样详情
Table 2. Sampling from 4th berth
编号 高程/m 所处区域 构件类型 4-1 5.05 大气区 横梁 4-2 5.00 大气区 横梁 4-3 4.95 大气区 横梁 4-4 4.50 水位变动区 盖梁 4-5 3.80 水位变动区 桥墩 4-6 3.30 水位变动区 桥墩 4-7 2.80 水位变动区 桥墩 4-8 2.30 水位变动区 桥墩 4-9 5.03 大气区 横梁 表 3 60号泊位取样详情
Table 3. Sampling from 60th berth
编号 60-1 60-2 60-3 60-4 60-5 60-6 60-7 60-A1 60-B1 60-C1 60-D1 高程/m 5.05 5.00 4.95 4.50 3.80 3.30 2.80 5.05 5.05 5.05 5.05 构件类型 横梁 桥墩 桥墩 桥台 桥台 桥台 桥台 盖梁 盖梁 盖梁 盖梁 注:取样所处区域为水位变动区。 -
[1] 张誉, 蒋利学, 张伟平, 等.混凝土结构耐久性概论[M].上海:上海科学技术出版社, 2003. ZHANG Yu, JIANG Lixue, ZHANG Weiping, et al. Durability of concrete structures[M]. Shanghai: Shanghai Science and Technology Press, 2003. (in Chinese) [2] 洪定海.混凝土中钢筋的腐蚀与保护[M].北京:中国铁道出版社, 1998. HONG Dinghai. Corrosion and protection of steel bar in concrete[M]. Beijing: China Railway Publishing House, 1998. (in Chinese) [3] 金伟良.浙东沿海高桩码头耐久性调查和研究报告[R].杭州: 浙江大学, 2002. JIN Weiliang. Durability report and research of long piled wharf in east of Zhejiang Province[R]. Hangzhou: Zhejiang University, 2002. (in Chinese) [4] 徐强, 俞海勇.大型海工混凝土结构耐久性研究与实践[M].北京:中国建筑工业出版社, 2008. XU Qiang, YU Haiyong. Study and practice on durability of large scale marine concrete structure[M]. Beijing: China Architecture & Building Press, 2008. (in Chinese) [5] 姬永生, 袁迎曙.干湿循环作用下氯离子在混凝土中的侵蚀过程分析[J].工业建筑, 2006, 36(12): 16-19, 23. doi: 10.3321/j.issn:1000-8993.2006.12.005 JI Yongsheng, YUAN Yingshu. Transport process of chloride in concrete under wet and dry cycles[J]. Industrial Construction, 2006, 36(12): 16-19, 23. (in Chinese) doi: 10.3321/j.issn:1000-8993.2006.12.005 [6] 金伟良, 金立兵, 延永东, 等.海水干湿交替区氯离子对混凝土侵入作用的现场检测和分析[J].水利学报, 2009, 40(3): 364-371. doi: 10.3321/j.issn:0559-9350.2009.03.016 JIN Weiliang, JIN Libing, YAN Yongdong, et al. Field inspection on chloride ion-intrusion effect of seawater in dry-wet cycling zone of concrete structures[J]. Journal of Hydraulic Engineering, 2009, 40(3): 364-371. (in Chinese) doi: 10.3321/j.issn:0559-9350.2009.03.016 [7] 董建锋, 邢峰, 戴虹, 等.混凝土不同面的氯离子侵蚀规律研究[J].混凝土, 2013(1): 18-20, 27. doi: 10.3969/j.issn.1002-3550.2013.01.005 DONG Jianfeng, XING Feng, DAI Hong, et al. Experimental study on chloride ingression properties of different surfaces in concrete[J]. Concrete, 2013(1): 18-20, 27. (in Chinese) doi: 10.3969/j.issn.1002-3550.2013.01.005 [8] DA COSTA A, FENAUX M, FERNÁNDEZ J, et al. Modellingof chloride penetration into non-saturated concrete: case study application for real marine offshore structures[J]. Construction and Building Materials, 2013, 43(6): 217-224. [9] KWON S J, NA U J, SANG S P, et al. Service life prediction of concrete wharves with early-aged crack: Probabilistic approach for chloride diffusion[J]. Structural Safety, 2009, 31(1): 75-83. doi: 10.1016/j.strusafe.2008.03.004 [10] 李俊.南方海港高桩码头钢筋混凝土结构耐久性评估及修复研究[D].杭州: 浙江大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10335-1014378246.htm LI Jun. Durability detection and repair of reinforced concrete structure in the open-type pier on pires in the Southern Coastal Areas[D]. Hangzhou: Zhejiang University, 2013. (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10335-1014378246.htm [11] 卞雷, 方永浩, 郇洪流, 等.连云港码头钢筋混凝土检测维修与结构耐久性分析[J].水运工程, 2008(3): 69-72. doi: 10.3969/j.issn.1002-4972.2008.03.015 BIAN Lei, FANG Yonghao, HUAN Hongliu, et al. Inspection, repairing and durability analysis of reinforced concrete at Lian-yungang Harbor[J]. Port & Waterway Engineering, 2008(3): 69-72. (in Chinese) doi: 10.3969/j.issn.1002-4972.2008.03.015 -