留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于等效单自由度模型的高桩码头地震位移需求分析

高树飞 冯云芬 贡金鑫

高树飞, 冯云芬, 贡金鑫. 基于等效单自由度模型的高桩码头地震位移需求分析[J]. 水利水运工程学报, 2018, (5): 30-40. doi: 10.16198/j.cnki.1009-640X.2018.05.005
引用本文: 高树飞, 冯云芬, 贡金鑫. 基于等效单自由度模型的高桩码头地震位移需求分析[J]. 水利水运工程学报, 2018, (5): 30-40. doi: 10.16198/j.cnki.1009-640X.2018.05.005
GAO Shufei, FENG Yunfen, GONG Jinxin. Seismic displacement demand analyses for pile-supported wharves based on equivalent single-degree-of-freedom models[J]. Hydro-Science and Engineering, 2018, (5): 30-40. doi: 10.16198/j.cnki.1009-640X.2018.05.005
Citation: GAO Shufei, FENG Yunfen, GONG Jinxin. Seismic displacement demand analyses for pile-supported wharves based on equivalent single-degree-of-freedom models[J]. Hydro-Science and Engineering, 2018, (5): 30-40. doi: 10.16198/j.cnki.1009-640X.2018.05.005

基于等效单自由度模型的高桩码头地震位移需求分析

doi: 10.16198/j.cnki.1009-640X.2018.05.005
基金项目: 

山东省自然科学基金资助项目 ZR2018BEE046

聊城大学博士科研启动基金资助项目 318051702

聊城大学博士科研启动基金资助项目 318051533

详细信息
    作者简介:

    高树飞(1989—), 男, 安徽蚌埠人, 博士, 讲师, 主要从事港口工程结构抗震研究。E-mail: gaoshufei@lcu.edu.cn

  • 中图分类号: U656.1+13

Seismic displacement demand analyses for pile-supported wharves based on equivalent single-degree-of-freedom models

  • 摘要: 在基于位移的高桩码头抗震设计方法中, 准确合理地确定码头地震位移需求是关键。在位移需求分析方法中, 非线性时程分析方法可以很好地考虑地震动的不确定性, 但由于复杂的桩-土相互作用, 使得直接对码头结构进行时程分析的计算量较大。为简便确定码头地震位移需求, 提出了一种可用于码头非线性时程分析的等效单自由度模型。该模型可以很好地模拟码头的承载力和刚度退化以及土体耗能, 并可通过对码头结构进行往复加载分析来确定模型的恢复力特性。为验证所提出的等效单自由度模型的合理性和准确性, 以两个高桩码头为例, 选取60条地震波, 分别对码头及其等效单自由度模型进行非线性时程分析, 结果表明二者的最大位移相关性很好, 位移比的均值接近于1, 且变异性很小。
  • 图  1  高桩码头分析模型和相应的单自由度模型

    Figure  1.  Analytical model of pile-supported wharf and corresponding single-degree-of-freedom model

    图  2  骨架曲线和Pivot滞回模型

    Figure  2.  Backbone curve and Pivot hysteretic model

    图  3  8根群桩的荷载-变形曲线

    Figure  3.  Load-displacement curve of 8-pile group

    图  4  Pushover曲线的折线化

    Figure  4.  Pushover curve linear approximation

    图  5  Masing准则

    Figure  5.  Masing rule

    图  6  码头断面(单位: mm)

    Figure  6.  Section of wharf (unit: mm)

    图  7  灌注桩码头的Pushover曲线

    Figure  7.  Pushover curves for cast-in-situ pile-supported wharf

    图  8  案例Ⅰ的最大位移ΔSTHA和ΔNTHA

    Figure  8.  Maximum displacements ΔSTHAandΔNTHAfor case study Ⅰ

    图  9  单自由度模型和码头位移反应

    Figure  9.  Displacement response of SDOF model and wharf

    图  10  单自由度模型的荷载-变形曲线

    Figure  10.  Load-deformation curves of SDOF model

    图  11  案例Ⅰ位移比ΔR的频率直方图

    Figure  11.  Frequency histograms for displacement ratio ΔR of case study Ⅰ

    图  12  钢管桩码头的Pushover曲线

    Figure  12.  Pushover curve for steel

    图  13  案例Ⅱ的最大位移ΔSTHA和ΔNTHA

    Figure  13.  Maximum displacements ΔSTHA and ΔNTHA for case study Ⅱ

    图  14  单自由度模型和码头的位移反应

    Figure  14.  Displacement response of SDOF model and wharf

    图  15  单自由度模型的荷载-变形曲线

    Figure  15.  Load-deformation curves of SDOF model

    图  16  案例Ⅱ位移比ΔR的频率直方图

    Figure  16.  Frequency histogram for displacement ratio ΔR of case study Ⅱ

    表  1  参数ab的取值

    Table  1.   Values for parameters a and b

    土体类型 砂土 黏土
    su=20 kPa su=40 kPa su=60 kPa
    a 1.691 2.571 3.565 4.718
    b 1.006 0.793 0.665 0.574
      注:su的中间值可以通过线性插值确定ab
    下载: 导出CSV

    表  2  地震动记录

    Table  2.   Ground motion records

    编号 地震名称 台站 MW Rrup/km vs/(m·s-1) PGA/g 持时/s
    1 1989 Loma Prieta Alameda Naval Air Stn Hanger 6.9 71.00 190 0.268 29.590
    2 1989 LomaPrieta Branciforte Dr. 6.9 10.70 376 0.481 19.965
    3 1989 LomaPrieta Hollister South and Pine Streets 6.9 27.90 371 0.371 55.880
    4 1989 LomaPrieta Capitola 6.9 15.23 289 0.511 39.990
    5 1989 LomaPrieta Sunnyvale, 1695 Colton Ave. 6.9 24.20 268 0.207 37.790
    6 1989 LomaPrieta Saratoga - Aloha Ave 6.9 8.50 381 0.515 39.990
    7 1989 LomaPrieta Gilory Array #7, Mantelli Ranch 6.9 22.70 334 0.323 38.395
    8 1989 LomaPrieta Gilory Array #3, Sewer Farm A 6.9 12.80 350 0.555 38.830
    9 1989 LomaPrieta Oakland, outer harbor wharf, 14th St. 6.9 74.30 249 0.269 39.980
    10 1989 LomaPrieta Stanford University, Parking garage 6.9 30.40 371 0.220 35.400
    11 1994 Northridge Arleta -Nordhoff Fire Sta 6.7 8.66 298 0.345 39.980
    12 1994 Northridge Los Angeles, 607 Westmoreland Ave. 6.7 26.70 315 0.362 28.830
    13 1994 Northridge Beverly Hills - 14145 Mulholland 6.7 17.15 356 0.443 29.980
    14 1994 Northridge Canoga Park - Topanga Can 6.7 14.70 267 0.358 24.980
    15 1994 Northridge Canyon Country - W LostCany 6.7 12.44 326 0.404 19.980
    16 1994 Northridge Castaic -Old Ridge Route 6.7 20.72 450 0.568 39.980
    17 1994 Northridge Glendale - Las Palmas 6.7 22.21 371 0.365 29.980
    18 1994 Northridge Canyon Country, 16628 W. LostCanyon Rd. 6.7 12.40 309 0.410 19.830
    19 1994 Northridge LosAngeles, University Hospital 6.7 34.20 376 0.493 34.220
    20 1994 Northridge LA -Centinela St 6.7 28.30 322 0.449 29.980
    21 1994 Northridge Sylmar, County Hosp. Parking Lot 6.7 5.30 441 0.604 39.300
    22 1994 Northridge Los Angeles, Obregon Park 6.7 37.40 349 0.563 39.460
    23 1994 Northridge N Hollywood - Coldwater Can 6.7 12.51 326 0.309 21.910
    24 1994 Northridge Newhall - FireSta 6.7 5.92 269 0.583 39.980
    25 1995 Kobe Kakogawa 6.9 22.50 312 0.240 40.950
    26 1995 Kobe Shin-Osaka 6.9 19.15 256 0.225 40.950
    27 1979 Imperial Valley El Centro Array 8, 95 E. Cruikshank Rd. 6.5 3.90 206 0.454 36.715
    28 1979 Imperial Valley Bonds Corner, Hwys 115&98 6.5 2.70 223 0.775 36.735
    29 1979 Imperial Valley SAHOPCasa Flores 6.5 9.60 339 0.506 14.100
    30 1979 Imperial Valley Agrarias 6.5 0.70 275 0.370 27.920
    31 1979 Imperial Valley Calexico Fire Station 6.5 10.50 231 0.275 37.020
    32 1979 Imperial Valley Chihuahua 6.5 7.30 275 0.254 38.780
    33 1979 Imperial Valley Delta 6.5 22.00 275 0.238 96.000
    34 1992 Landers Coolwater 7.3 19.70 271 0.417 27.492
    35 1992 Landers JoshuaTree, Fire Station 7.3 11.00 379 0.284 43.980
    36 1992 Landers Yermo Fire Station 7.3 23.60 354 0.245 43.960
    37 1999 Kocaeli Turkey Sakaya 7.5 3.10 471 0.376 29.610
    38 1999 Kocaeli Turkey Yarimca 7.5 4.80 297 0.349 29.465
    39 1999 Chi-Chi, Taiwan TCU079-090 7.6 11.00 364 0.743 65.755
    40 1999 Chi-Chi, Taiwan TCU095-000 7.6 45.20 447 0.712 69.135
    41 1999 Chi-Chi, Taiwan WGK-000 7.6 10.00 259 0.484 52.395
    42 1999 Chi-Chi, Taiwan TCU067-000 7.6 0.60 434 0.325 65.925
    43 1999 Chi-Chi, Taiwan TCU078-090 7.6 8.20 443 0.444 66.435
    44 1999 Chi-Chi, Taiwan CHY101-000 7.6 10.00 259 0.440 67.595
    45 1999 Chi-Chi, Taiwan TCU095-090 7.6 45.20 447 0.379 68.235
    46 1999 Chi-Chi, Taiwan CHY041-000 7.6 19.80 492 0.639 67.520
    47 1999 Chi-Chi, Taiwan CHY088-000 7.6 37.50 273 0.216 63.880
    48 1999 Chi-Chi, Taiwan TCU079-000 7.6 11.00 364 0.393 66.490
    49 1999 Chi-Chi, Taiwan CHY036-090 7.6 16.10 233 0.294 73.420
    50 1999 Chi-Chi, Taiwan CHY101-090 7.6 10.00 259 0.353 67.030
    51 1987 Whittier Narrows Tarzana, Cedar Hill Nursery A 6.0 41.20 257 0.644 38.775
    52 1987 Whittier Narrows Garvey Reservoir Control Building 6.0 14.50 468 0.457 25.365
    53 1987 Whittier Narrows Los Angeles, Obregon Park 6.0 15.20 349 0.450 38.065
    54 1987 Superstition Hills Superstition Mountain, Site 8 6.5 5.60 362 0.682 22.130
    55 1987 Superstition Hills El Centro, Parachute Test Site 6.5 1.00 349 0.377 22.300
    56 1987 Superstition Hills Poe Road-temporary 6.5 11.20 208 0.446 22.290
    57 1987 Superstition Hills El Centro, Imperial Co. Center grounds 6.5 18.20 192 0.358 39.140
    58 1987 Superstition Hills Bonds Corner, Hwys 115&98 6.5 39.00 223 0.281 14.990
    59 1987 Superstition Hills Westmorland 6.5 13.00 194 0.211 38.580
    60 1987 Superstition Hills Calexico Fire Station 6.5 28.90 231 0.210 14.990
      注:表中M4为矩震级, Rrup为断层距, PGA为峰值地面加速度。
    下载: 导出CSV
  • [1] 高树飞, 贡金鑫.基于位移的高桩码头抗震设计方法[J].水运工程, 2014(10): 39-46. doi:  10.3969/j.issn.1002-4972.2014.10.008

    GAO Shufei, GONG Jinxin. Displacement-based seismic design method for pile-supported wharf[J]. Port and Waterway Engineering, 2014(10): 39-46. (in Chinese) doi:  10.3969/j.issn.1002-4972.2014.10.008
    [2] California Building Code. Chapter 31F Marine oil terminal engineering and maintenance standards (MOTEMS)[S].
    [3] Port of Long Beach. Wharf design criteria (Version 3.0)[S]. 2015.
    [4] The Port of Los Angeles. Code for seismic design, repair, and upgrade of container wharves[S]. 2010.
    [5] ASCE/COPRI 61-14 Seismic design of piers and wharves[S].
    [6] GAO Shufei, GONG Jinxin, FENG Yunfen. Equivalent damping for displacement-based seismic design of pile-supported wharves with soil-pile interaction[J]. Ocean Engineering, 2016, 125: 12-25. doi:  10.1016/j.oceaneng.2016.08.006
    [7] 高树飞, 贡金鑫, 冯云芬.考虑桩土相互作用的高桩码头体系等效阻尼比及Pushover分析[J].海洋工程, 2015, 33(5): 24-34. http://d.old.wanfangdata.com.cn/Periodical/hygc201505004

    GAO Shufei, GONG Jinxin, FENG Yunfen. Equivalent damping ratio and pushover analysis for pile-supported wharf system considering pile-soil interaction[J]. The Ocean Engineering, 2015, 33(5): 24-34. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/hygc201505004
    [8] 高树飞, 贡金鑫, 冯云芬.高桩码头Pushover分析影响因素研究[J].水利水运工程学报, 2015(5): 1-14. http://slsygcxb.cnjournals.org/ch/reader/view_abstract.aspx?file_no=201505001&flag=1

    GAO Shufei, GONG Jinxin, FENG Yunfen. Influencing factors of pushover analysis for open type wharf with standing[J]. Hydro-Science and Engineering, 2015(5): 1-14. (in Chinese) http://slsygcxb.cnjournals.org/ch/reader/view_abstract.aspx?file_no=201505001&flag=1
    [9] 高树飞, 贡金鑫.基于Winkler地基梁模型的高桩码头非线性时程分析[J].中国港湾建设, 2015, 35(3): 14-20. http://d.old.wanfangdata.com.cn/Periodical/zggwjs201503003

    GAO Shufei, GONG Jinxin. Nonlinear time-history analysis of pile-supported wharf based on model of beam on Winkler foundation[J]. China Harbour Engineering, 2015, 35(3): 14-20. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/zggwjs201503003
    [10] DONAHUE M J, DICKENSON S E, MILLER T H, et al. Implications of the observed seismic performance of a pile-supported wharf for numerical modeling[J]. Earthquake Spectra, 2005, 21(3): 617-634. doi:  10.1193/1.1978887
    [11] YANG C, DESROCHES R, RIX G. Numerical fragility analysis of vertical-pile-supported wharves in the western United States[J]. Journal of Earthquake Engineering, 2012, 16(4): 579-594. doi:  10.1080/13632469.2011.641063
    [12] TORKAMANI H H, BARGI K, AMIRABADI R. Seismic vulnerability assessment of pile-supported wharves using fragility curves[J]. Structure and Infrastructure Engineering: Maintenance, Management, Life-Cycle Design and Performance, 2014, 10(11): 1417-1431. doi:  10.1080/15732479.2013.823453
    [13] FEMA 440 Improvement of nonlinear static seismic analysis procedures[S].
    [14] KOUTROMANOS I, STAVRIDIS A, SHING P B, et al. Numerical modeling of masonry-infilled RC frames subjected to seismic loads[J]. Computers and Structures, 2011, 89(11): 1026-1037. http://n204.wanfangdata.com.cn/Archive/DownloadFile/c2534556-cbe5-4506-a6a9-4d11fcad55de
    [15] WALSH S M, ASHFORD S A. Full-scale lateral load testing of Pier 3 at the port of Long Beach[R]. San Diego: University of California at San Diego, 2004.
    [16] DOWELL R K, SEIBLE F, WILSON E L. Pivot hysteresis model for reinforced concrete members[J]. ACI Structural Journal, 1998, 95(5): 607-616.
    [17] SHARMA A, ELIGEHAUSEN R, REDDY G R. Pivot hysteresis model parameters for RC columns, joints and structures[J]. ACI Structural Journal, 2013, 110(2): 217-227.
    [18] GAO Shufei, GONG Jinxin, FENG Yunfen. Equivalent damping ratio equations in support of displacement-based seismic design for pile-supported wharves[J]. Journal of Earthquake Engineering, 2017, 21(3): 493-530. doi:  10.1080/13632469.2016.1172377
    [19] 陈国兴.岩土地震工程学[M].北京:科学出版社, 2007.

    CHEN Guoxing. Geotechical earthquake engineering[M]. Beijing: Science Press, 2007. (in Chinese)
    [20] JTS 146—2012水运工程抗震设计规范[S].

    JTS 146—2012 Code for seismic design of water transport engineering[S]. (in Chinese)
  • [1] 胡荣金, 皮家骏, 潘世洋, 黄永涛, 刘晓青.  基于埋置梁广义位移法的桩基拱式渡槽受力分析 . 水利水运工程学报, 2022, (5): 113-122. doi: 10.12170/20210929002
    [2] 冯云芬, 高树飞.  基于位移的高桩码头地震易损性分析 . 水利水运工程学报, 2019, (3): 76-84. doi: 10.16198/j.cnki.1009-640X.2019.03.010
    [3] 姚雷, 姚文娟.  高桩码头对邻近爆破的非线性动力响应分析 . 水利水运工程学报, 2018, (1): 66-72. doi: 10.16198/j.cnki.1009-640X.2018.01.010
    [4] 高树飞, 贡金鑫, 冯云芬.  国内外高桩码头抗震性能和设计方法研究进展Ⅱ:桩-土相互作用 . 水利水运工程学报, 2017, (1): 57-72. doi: 10.16198/j.cnki.1009-640X.2017.01.009
    [5] 高树飞, 贡金鑫, 冯云芬.  国内外高桩码头抗震性能和设计方法研究进展Ⅲ:斜桩和桩-上部结构连接的抗震性能 . 水利水运工程学报, 2017, (2): 16-28. doi: 10.16198/j.cnki.1009-640X.2017.02.003
    [6] 陈旭东, 李俊杰, 霍中艳.  高桩码头裂缝开合度监测模型研究 . 水利水运工程学报, 2017, (6): 53-59. doi: 10.16198/j.cnki.1009-640X.2017.06.008
    [7] 高树飞, 贡金鑫, 冯云芬.  国内外高桩码头抗震性能和设计方法研究进展 . 水利水运工程学报, 2016, (6): 1-8.
    [8] 李瑜, 陈灿明, 黄卫兰, 王曦鹏.  桩基倾斜度对低应变反射波法割桩损伤的影响 . 水利水运工程学报, 2015, (6): 54-59.
    [9] 高树飞, 贡金鑫, 冯云芬.  高桩码头Pushover分析影响因素研究 . 水利水运工程学报, 2015, (5): 1-14.
    [10] 王雪红.  优化BP神经网络的位移预测模型 . 水利水运工程学报, 2014, (2): 38-42.
    [11] 卢陈,刘晓平,林积大,刘霞.  水平荷载下底梁式全直桩码头横向荷载传递规律 . 水利水运工程学报, 2012, (1): 43-48.
    [12] 陈生水,方绪顺,钱亚俊.  高土石坝地震安全评价及抗震设计思考 . 水利水运工程学报, 2011, (1): -.
    [13] 李颖,贡金鑫.  有斜桩和无斜桩高桩码头地震反应的非线性有限元分析 . 水利水运工程学报, 2011, (2): -.
    [14] 李颖,贡金鑫,吴澎.  高桩码头抗震性能的pushover分析 . 水利水运工程学报, 2010, (4): -.
    [15] 李颖,贡金鑫.  考虑桩土相互作用的高桩码头非线性地震反应分析 . 水利水运工程学报, 2010, (2): -.
    [16] 宋智通,张子明,陈金杭,尹刚.  基于等效时间的非线性热传导方程及其工程应用 . 水利水运工程学报, 2008, (4): -.
    [17] 黄书秩,唐太平,黄卫生.  集中荷载作用下高桩码头面板的横向配筋 . 水利水运工程学报, 1996, (1): -.
    [18] 顾培英,高明.  单自由度减震结构体系分析 . 水利水运工程学报, 1995, (2): -.
    [19] 童建波,高明.  侧向受载排桩的动力试验及非线性分析 . 水利水运工程学报, 1989, (4): -.
    [20] 高明.  高桩码头的简化空间计算及实验研究 . 水利水运工程学报, 1979, (2): -.
  • 加载中
图(16) / 表 (2)
计量
  • 文章访问数:  872
  • HTML全文浏览量:  11
  • PDF下载量:  175
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-14
  • 刊出日期:  2018-10-01

/

返回文章
返回