A study of seismic performance of concrete gravity dam based on incremental dynamic analysis
-
摘要: 基于性能的抗震设计理念, 利用增量动力分析法(IDA)结合所建立的混凝土重力坝模型, 根据分位分析结果评估重力坝抗震性能。以Koyna重力坝为例, 分别建立以无质量地基法和附加质量法的传统模型和以黏弹性边界法和流固耦合法建立的坝体-地基-库水相互作用抗震分析模型。选取16条地震记录作为输入, 选取地面峰值加速度作为地震强度指标、坝顶相对位移作为结构性能指标, 以此为基础作IDA曲线。将两种模型分位分析结果进行对比, 结果表明:针对不同保证率的地面峰值加速度(PGA), 新模型总体安全冗余度高于传统模型10%~20%, 以传统方法建立的抗震分析模型的计算结果偏于保守, Koyna大坝的极限抗震能力约为0.45g, 其功能保障水平约为0.34g; IDA方法也将为今后大坝抗震设计提供一种新的思路。
-
关键词:
- 增量动力分析 /
- 坝体-地基-库水相互作用 /
- 黏弹性边界 /
- 流固耦合 /
- 抗震性能评价
Abstract: Based on the performance of the seismic design concept for the concrete dam, the incremental dynamic analysis method (IDA) is adopted to evaluate the seismic performance of the gravity dam according to the results of the sub-analysis. Taking the Koyna gravity dam as a case study, the traditional model with massless foundation and added mass method and the seismic dam-foundation-reservoir interaction model with the viscous spring boundary and fluid-solid coupling method are respectively developed in this study. 16 earthquake records are taken as the ground inputs; the ground peak acceleration is selected as the earthquake strength index and the relative displacement of the crest as the structural performance index. Then, the IDA curves are plotted and the results of the two models are compared. The research results show that the new model has a high overall safety redundancy for the PGA with different guarantee rates, which is about 10% ~ 20% higher as compared to the traditional model. And the calculation results of the seismic analysis model established by the traditional method are conservative; the ultimate seismic capacity of the Koyna dam is about 0.45g, and its function guarantee level is about 0.34g. The traditional method is conservative and the incremental dynamic analysis method will also provide a new idea for the seismic design of dams in the future. -
表 1 选取的地震记录
Table 1. Selected earthquake records
序号 地震动名称 年份 测站位置 震级 场地分类 实测地面峰值加速度/g 顺流向 垂直流向 1 Imperial Valley-07 1979 El Centro Array #2 6.9 B 0.326 0.202 2 Kern County 1952 LA-Hollywood Stor FF 7.2 B 0.169 0.152 3 Morgan Hill 1984 Hollister Array #3 6.9 B 0.295 0.207 4 Morgan Hill 1984 Holtville Post Office 6.8 B 0.511 0.307 5 Northridge 1995 Beverly Hills-Mulhol 6.7 A 1.571 1.257 6 Northridge 1994 LA-Hollywood Stor FF 6.7 B 0.511 0.566 7 Westmorland 1981 Salton Sea Wildlife Refuge 6.5 B 0.193 0.101 8 Westmorland 1981 Westmorlan Fire 6.9 B 0.355 0.616 9 Coyote Lake 1979 Gilroy Array #4 6.9 B 0.357 0.325 10 Takochi-oki 1968 CHY101 6.9 B 0.245 0.241 11 Kobe 1995 Hyogo-ken Nanbu 7.2 A 0.834 0.518 12 San Fernando 1971 Via Tejon PV 6.6 B 0.111 0.081 13 San Fernando 1971 Cholame-Shandon Array #2 6.5 B 0.144 0.112 14 Coalinga-01 1983 Parkfield-Cholame 6.7 B 0.211 0.141 15 Coalinga-02 1983 TRA 6.9 B 0.301 0.276 16 Koyna Dam 1967 Koyna 6.3 A 0.474 0.312 表 2 不同分位概率下各性能水平对应的PGA
Table 2. PGA corresponding to performance levels of different fractile probabilities
分位概率 模型1水平方向 模型2水平方向 模型1竖直方向 模型2竖直方向 功能保障 安全保证 功能保障(冗余度/%) 安全保证(冗余度/%) 功能保障 安全保证 功能保障(冗余度/%) 安全保证(冗余度/%) 84% 0.430g 0.492g 0.477g(9.8) 0.569g(13.5) 0.428g 0.491g 0.475g(9.9) 0.572g(14.2) 50% 0.320g 0.444g 0.397g(19.4) 0.543g(18.2) 0.335g 0.438g 0.403g(16.9) 0.541g(19.0) 中值 0.297g 0.435g 0.370g(19.7) 0.521g(16.5) 0.301g 0.429g 0.372g(19.1) 0.536g(19.9) 16% 0.266g 0.376g 0.339g(21.5) 0.451g(17.7) 0.261g 0.371g 0.336g(22.3) 0.451g(17.7) -
[1] 张楚汉, 金峰, 王进廷, 等.高混凝土坝抗震安全评价的关键问题与研究进展[J].水利学报, 2016, 47(3): 253-264. http://d.old.wanfangdata.com.cn/Periodical/slxb201603001 ZHANG Chuhan, JIN Feng, WANG Jingting. Key issues and developments on seismic safety evaluation of high concrete dams[J]. Journal of Hydraulic Engineering, 2016, 47(3): 253-264. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/slxb201603001 [2] 张社荣, 王超, 孙博.基于性能的重力坝随机地震反应概率特征[J].天津大学学报(自然科学与工程技术版), 2013, 46(7): 603-610. http://d.old.wanfangdata.com.cn/Periodical/tianjdxxb201307006 ZHANG Sherong, WANG Chao, SUN Bo. Probabilistic characteristics of the performance-based seismic response of concrete gravity dams[J]. Journal of Tianjin University (Science and Technology), 2013, 46(7): 603-610. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/tianjdxxb201307006 [3] 沈怀至, 金峰, 张楚汉.基于性能的重力坝-地基系统地震易损性分析[J].工程力学, 2008, 25(12): 86-91. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=GCLX200812018&dbname=CJFD&dbcode=CJFQ SHEN Huaizhi, JIN Feng, ZHANG Chuhan. Erformance-based seismic fragility analysis of concrete gravity-foundation system[J]. Engineering Mechanics, 2008, 25(12): 86-91. (in Chinese) http://kns.cnki.net/KCMS/detail/detail.aspx?filename=GCLX200812018&dbname=CJFD&dbcode=CJFQ [4] SOYSAL B F, BINICI B, ARICI Y. Investigation of the relationship of seismic intensity measures and the accumulation of damage on concrete gravity dams using incremental dynamic analysis[J]. Earthquake Engineering and Structural Dynamics, 2016, 45(5): 719-737. doi: 10.1002/eqe.v45.5 [5] TERZI N U, SELCUK M E. Nonlinear dynamic behavior of Pamukcay earthfill dam[J]. Geomechanics and Engineering, 2015, 9(1): 83-100. doi: 10.12989/gae.2015.9.1.083 [6] TORISU S S, SATO J, TOWHATA I, et al. 1-G model tests and hollow cylindrical torsional shear experiments on seismic residual displacements of fill dams from the viewpoint of seismic performance-based design[J]. Soil Dynamics and Earthquake Engineering, 2010, 30(6): 423-437. doi: 10.1016/j.soildyn.2009.12.016 [7] VANMVATSIKOS D. Incremental dynamic analysis[M]. Springer Berlin Heidelberg, 2015. [8] AIEMBAGHERI M, GHAEMIAN M. Seismic assessment of concrete gravity dams using capacity estimation and damage indexes[J]. Earthquake Engineering and Structural Dynamics, 2013, 42(1): 123-144. doi: 10.1002/eqe.v42.1 [9] AMIRPOUR A, MIRZABOZORG H. Quantifying the qualitative limit-states using IDA approach in concrete arch dams[J]. Arabian Journal for Science and Engineering, 2014, 39(11): 7729-7740. doi: 10.1007/s13369-014-1393-z [10] 李静, 陈健云, 徐强, 等.高拱坝抗震性能评价指标研究[J].水利学报, 2015, 46(1): 118-124. http://d.old.wanfangdata.com.cn/Periodical/slxb201501016 LI Jing, CHEN Jianyun, XU Qiang, et al. Study on index of seismic performance evaluation of arch dam[J]. Journal of Hydraulic Engineering, 2015, 46(1): 118-124. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/slxb201501016 [11] NB 35047—2015水电工程防震抗震设计规范[S]. NB 35047—2015 Code for seismic design of hydraulic structures of hydropower project[S]. (in Chinese) [12] VAMVASTSIKOS D. Seismic performance uncertainty estimation via IDA with progress accelerogram-wise Latin hypercube sampling[J]. Journal of Structure and Engineering, 2014, 140(8): 657-670. http://onlinelibrary.wiley.com/resolve/reference/XREF?id=10.1061/(ASCE)ST.1943-541X.0001030 [13] HARIRI-ARDEBILI M A, SAOUMA V E, PORTER K A. Quantification of seismic potential failure modes in concrete dams[J]. Earthquake Engineering and Structural Dynamics, 2016, 45(6): 979-997. doi: 10.1002/eqe.v45.6 [14] ARDEBILI M H, SAOUMA V. Collapse fragility curves for concrete dams: comprehensive study[J]. Journal of Structural Engineering, 2016, 142(10): 101-115. [15] OMIDI O, LOTFI V. A symmetric implementation of pressure-based fluid-structure interaction for nonlinear dynamic analysis of arch dams[J]. Journal of Fluids and Structures, 2017, 69: 34-55. doi: 10.1016/j.jfluidstructs.2016.12.003 [16] DEEK A J, RANDOLPH M. Axisymmetric time-domain transmitting boundaries[J]. Journal of Engineering Mechanics, 1994, 120(1): 25-42. doi: 10.1061/(ASCE)0733-9399(1994)120:1(25) [17] CHEN D H, DU C B, YUAN J W, et al. An investigation into the influence of damping on the earthquake response analysis of a high arch dam[J]. Journal of Earthquake Engineering, 2012, 16(3): 329-349. doi: 10.1080/13632469.2011.638697 [18] 何建涛, 马怀发, 张伯艳, 等.黏弹性人工边界地震动输入方法及实现[J].水利学报, 2010, 41(8): 960-969. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201002080182 HE Jiantao, MA Huaifa, ZHANG Boyan, et al. Method and realization of the seismic motion input of viscous-spring boundary[J]. Journal of Hydraulic Engineering, 2010, 41(8): 960-969. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201002080182 [19] WANG G H, ZHANG S R, ZHOU C B, et al. Correlation between strong motion durations and damage measures of concrete gravity dams[J]. Soil Dynamics and Earthquake Engineering, 2015, 69: 148-162. doi: 10.1016/j.soildyn.2014.11.001 [20] LEE J, FENVES G L. A plastic-damage concrete model for earthquake analysis of dams[J]. Earthquake Engineering and Structural Dynamics, 1998, 27: 937-956. doi: 10.1002/(ISSN)1096-9845 [21] 刘章军, 曾波, 周宜红, 等.地震动过程的概率模型及在重力坝抗震可靠度分析中的应用[J].水利学报, 2014, 45(9): 1066-1074. http://d.old.wanfangdata.com.cn/Periodical/slxb201409007 LIU Zhangjun, ZENG Bo, ZHOU Yihong, et al. Probabilistic model of ground motion processes and seismic dynamic reliability analysis of the gravity dam[J]. Journal of Hydraulic Engineering, 2014, 45(9): 1066-1074. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/slxb201409007 [22] 张社荣, 王高辉, 王超.混凝土重力坝极限抗震能力评价方法[J].水力发电学报, 2013, 32(3): 168-175. http://d.old.wanfangdata.com.cn/Periodical/slfdxb201303029 ZHANG Sherong, WANG Gaohui, WANG Chao. Study on ultimate aseismic capacity evaluation of concrete gravity dam[J]. Journal of Hydroelectric Engineering, 2013, 32(3): 168-175. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/slfdxb201303029 -