Prediction and control of groundwater immersion of the mid-channel bar
-
摘要: 针对新干航电枢纽工程引起的库区江心洲浸没问题,通过建立江心洲浸没评价的地下水三维非稳定流有限元渗流模型,在多年平均水文条件下,按堤外抬田防渗和堤内多种浸没控制措施(防渗墙与减压井联合布设工况方案)进行浸没评价和控制预测。结果表明:①在无防渗措施工况下,江心洲迅速发生顶托型浸没,而防渗墙可延缓江心洲堤内浸没发生的时间,同时在堤外抬田,可有效控制浸没程度;②对比预测不同的减压井(井径及其与防渗墙的垂直距离)布设方案的运行效果,结果显示在大井径且井列线位于居民建筑物临界处时,能够有效控制江心洲堤内的浸没范围;③防渗墙与减压井联合布设时,在达到浸没控制要求的条件下,防渗墙可大大减小减压井排水量。不同工况的对比研究可为新干航电枢纽工程库区江心洲浸没控制及方案设计提供科学依据。Abstract: In order to mitigate the groundwater inundation in the mid-channel bar as a consequence of water storage of Xingan Navigation and Power Junction, a three-dimensional transient flow simulation model is established by finite element method to evaluate and control hazards. Under long-term average hydrological conditions, groundwater immersion assessment and control prediction are performed with a variety of mitigation measures (farmland-raised engineering outside the Juzhou Embankment and combination of impervious wall and relief wells inside the embankment) based on the simulation model. The prediction results indicate that: (1) Without immersion control measures, the backwater immersion quickly occurs at the mid-channel bar. However, the impervious wall can greatly delay the process time of groundwater immersion in the mid-channel bar. Meanwhile, the farmland-raised engineering outside the embankment effectively controls the degree of groundwater immersion. (2) The comparison results based on the operational effects of different relief wells (borehole diameter, vertical distance from the cutoff wall) show that relief wells with a large well diameter located at the line along the residential building can effectively control the immersion area in the embankment. (3) The combined usage of impervious wall and the relief well can greatly reduce the discharge of the relief well under the immersed control requirements. To sum up, the comparative study with different control measures can provide a scientific basis for the immersion control and scheme design of the mid-channel bar in the Xingan Navigation Power Junction.
-
Key words:
- navigation and power project /
- reservoir immersion /
- groundwater /
- relief well /
- impervious wall /
- numerical simulation
-
表 1 研究区各地层水文地质参数
Table 1. Hydrogeological parameters of various layers in study area
分区 渗透系数/(m·d-1) 给水度 贮水率/m-1 地下水净
补给系数壤土层 黏土层 细砂层 砂卵砾石层 基岩层 壤土层 黏土层 细砂层 细砂层 砂卵砾石层 基岩层 a - - - 79 1×10-4 - - - - 2.70×10-7 1.67×10-9 0 b - - 6 57 1×10-4 - - 0.15 - 2.63×10-7 1.67×10-9 0.003 c 1.0 0.50 6 57 1×10-4 0.05 0.05 - 1.79×10-6 9.12×10-8 1.67×10-9 0.003 d 0.6 0.27 3 57 1×10-4 0.05 0.05 - 1.79×10-6 9.12×10-8 1.67×10-9 0.003 e 0.6 0.27 3 24 1×10-4 0.05 0.05 - 1.79×10-6 9.12×10-8 1.67×10-9 0.003 f - - 6 57 1×10-4 - - 0.15 - 2.63×10-7 1.67×10-9 0.011 g 1.0 0.80 6 57 1×10-4 0.05 0.05 - 1.79×10-6 9.12×10-8 1.67×10-9 0.011 h 1.0 0.80 3 57 1×10-4 0.05 0.05 - 1.79×10-6 9.12×10-8 1.67×10-9 0.011 i 1.0 0.80 3 24 1×10-4 0.05 0.05 - 1.79×10-6 9.12×10-8 1.67×10-9 0.011 j 1.0 1.00 3 57 1×10-4 0.05 0.05 - 1.79×10-6 9.12×10-8 1.67×10-9 0.011 k - - 6 57 1×10-4 - - 0.15 - 9.12×10-8 1.67×10-9 0.011 l - - 6 57 1×10-4 - - 0.15 - 2.63×10-7 1.67×10-9 0.042 m - - 6 57 1×10-4 - - 0.15 - 2.63×10-7 1.67×10-9 0.042 n - - 3 24 1×10-4 - - 0.15 - 2.63×10-7 1.67×10-9 0.042 o - - 3 57 1×10-4 - - 0.15 - 2.63×10-7 1.67×10-9 0.042 表 2 防渗措施布设情况
Table 2. Arrangements of anti-immersion measures in study area
工况 防渗墙 减压井 是否抬田 类型 布设位置 井径/m 排渍高程/m 布设位置(堤后)/m 工况1 - - - - - 工况2 - - - - - 是 工况3 A→D - - - 是 工况4 深入到砂卵砾石层底部 B→A→D→C - - - 是 工况5 B→A→D→C→B - - - 是 工况6 深入到砂卵砾石层顶部 B→A→D→C→B - - - 是 工况7 - - 0.6 30.4 2 是 工况8 - - 0.6 30.4 18 是 工况9 - - 0.2 30.4 18 是 工况10 - - 0.4 30.4 18 是 工况11 A→D 0.6 30.4 18 是 工况12 深入到砂卵砾石层底部 B→A→D→C 0.6 30.4 18 是 工况13 B→A→D→C→B 0.6 30.4 18 是 表 3 各工况下江心洲浸没面积统计
Table 3. Statistics of immersed area in mid-channel bar under different conditions
方案编号 浸没分区 浸没面积/(104m2) 浸没面积与江心洲陆地面积比 严重浸没 中度浸没 轻度浸没 总浸没 工况1 堤外 19.071 - 55.005 74.075 0.465 堤内 5.004 49.950 15.645 70.599 0.443 工况2 堤外 0 - 0 0 0 堤内 4.900 50.013 15.687 70.599 0.443 工况3 堤内 4.898 49.869 15.832 70.599 0.443 工况4 堤内 4.967 50.021 15.612 70.599 0.443 工况5 堤内 4.998 50.184 15.458 70.640 0.443 工况6 堤内 4.898 50.006 15.695 70.599 0.443 工况7 堤内 0 2.516 16.248 18.764 0.118 工况8 堤内 0.022 2.041 4.195 6.259 0.039 工况9 堤内 0.102 16.862 20.054 37.018 0.232 工况10 堤内 0.022 2.441 11.851 14.314 0.090 工况11 堤内 0.034 1.570 3.740 5.344 0.034 工况12 堤内 0.034 1.415 3.513 4.963 0.031 工况13 堤内 0.034 1.245 3.120 4.399 0.028 -
[1] 戚筱俊.工程地质及水文地质[M].北京:中国水利水电出版社, 1997. QI Xiaojun. Engineering geology and hydrogeology[M]. Beijing: China Water Power Press, 1997. (in Chinese) [2] GRAAF I, BEEK L, WADA Y, et al. Dynamic attribution of global water demand to surface water and groundwater resources: Effects of abstractions and return flows on river discharges[J]. Advances in Water Resources, 2014, 64(1): 21-33. http://www.sciencedirect.com/science/article/pii/S0309170813002467 [3] 戴长雷, 李治军, 高淑琴.大顶子山航电枢纽蓄水后上游临江地区地下水浸没影响态势初步分析[J].黑龙江大学工程学报, 2010, 1(1): 45-50. http://d.old.wanfangdata.com.cn/Periodical/hljsz201004008 DAI Changlei, LI Zhijun, GAO Shuqin. Groundwater immersion situation in riverside regions after Dadingzishan Navigation Hydropower Project storing water[J]. Journal of Engineering of Heilongjiang University, 2010, 1(1): 45-50. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/hljsz201004008 [4] KARATZAS G P. Developments on mdeling of groundwater flow and contaminant transport[J]. Water Resour Manage, 2017, 31(10): 3235-3244. doi: 10.1007/s11269-017-1729-z [5] GLEESON T, MANNING A H. Regional groundwater flow in mountainous terrain: three-dimensional simulations of topographic and hydrogeologic controls[J]. Water Resources Research, 2008, 44(10): 297. http://www.tandfonline.com/servlet/linkout?suffix=CIT0019&dbid=16&doi=10.1080%2F07011784.2017.1414635&key=10.1029%2F2008WR006848 [6] DOBLE R C, CROSBIE R S, SMERDON B D, et al. Groundwater recharge from overbank floods[J]. Water Resources Research, 2012, 48(9): 9522. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0228538615/ [7] SCIBEK J, ALLEN D M, WHITFIELD P H. Quantifying the impacts of climate change on groundwater in an unconfined aquifer that is strongly influenced by surface water[J]. Geological Society London Special Publications, 2008, 288(1): 79-98. doi: 10.1144/SP288.07 [8] 骆祖江, 张弘, 李会中, 等.乌东德水电站坝址区地下水渗流三维非稳定流数值模拟[J].岩石力学与工程学报, 2011, 30(2): 341-347. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb201102017 LUO Zujiang, ZHANG Hong, LI Huizhong, et al. Three-dimensional transient flow numerical simulation of groundwater seepage in dam site of Wudongde hydropower station[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(2): 341-347. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb201102017 [9] TAO X, MA J, ZENG W. Treatment effect investigation of underground continuous impervious curtain application in water-rich strata[J]. International Journal of Mining Science and Technology, 2015, 25(6): 975-981. doi: 10.1016/j.ijmst.2015.09.015 [10] 王晓燕, 党发宁, 田威, 等.大渡河某水电站围堰工程中悬挂式防渗墙深度的确定[J].岩土工程学报, 2008, 30(10): 1564-1568. doi: 10.3321/j.issn:1000-4548.2008.10.025 WANG Xiaoyan, DANG Faning, TIAN Wei, et al. Determination of depth of suspended cut-off walls in cofferdam of a hydraulic power station in Dadu River[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(10): 1564-1568. (in Chinese) doi: 10.3321/j.issn:1000-4548.2008.10.025 [11] 冶雪艳, 杜新强, 杨悦锁.绥化市红兴水库渗漏分析及渗控方案模拟预测[J].吉林大学学报(地球科学版), 2010, 40(1): 128-133. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201001017 YE Xueyan, DU Xinqiang, YANG Yuesuo. Seepage analysis and forecast of the seepage-control schemes of Hongxing reservior in Suihua City[J]. Journal of Jilin Unviersity (Earth Science Edition), 2010, 40(1): 128-133. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201001017 [12] 吕路, 杨军耀, 秦嘉楠.汾河三期蓄水工程人工湖渗漏对太原市浅层地下水影响的数值模拟[J].水电能源科学, 2017, 35(1): 89-93. http://www.cnki.com.cn/Article/CJFDTOTAL-SDNY201701022.htm LYU Lu, YANG Junyao, QIN Jianan. Numerical simulation of impact of artificial lake leakage on shallow groundwater in Taiyuan in third stage of Fenhe River water storage project[J]. Water Resources and Power, 2017, 35(1): 89-93. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-SDNY201701022.htm [13] 骆祖江, 杨林, 李占军, 等.松原壅水坝工程库区左岸浸没预测三维数值模拟[J].农业工程学报, 2012, 28(3): 129-134. doi: 10.3969/j.issn.1002-6819.2012.03.023 LUO Zujiang, YANG Lin, LI Zhanjun, et al. Three-dimensional numerical simulation for immersion prediction of left bank of Songyuan reservoir project[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(3): 129-134. (in Chinese) doi: 10.3969/j.issn.1002-6819.2012.03.023 [14] 曹洪, 尹小玲, 魏旭辉, 等.潮州供水枢纽工程库区浸没影响初探[J].岩石力学与工程学报, 2004, 23(5): 862-866. doi: 10.3321/j.issn:1000-6915.2004.05.028 CAO Hong, YIN Xiaoling, WEI Xuhui, et al. Primary study on effects of immersion by reservior of Chaozhou water supply project[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(5): 862-866. (in Chinese) doi: 10.3321/j.issn:1000-6915.2004.05.028 [15] 曹剑峰, 迟宝明, 王文科, 等.专门水文地质学[M].北京:科学出版社, 2006. CAO Jianfeng, CHI Baoming, WANG Wenke, et al. Special hydrogeology[M]. Beijing: Science Press, 2006. (in Chinese) [16] 钱会, 郑西来, 樊秀峰.傍河取水越河稳定渗流问题的三维数值模拟研究[J].水利学报, 1999(3): 32-37. doi: 10.3321/j.issn:0559-9350.1999.03.006 QIAN Hui, ZHENG Xilai, FAN Xiufeng. Numerical modeling of steady state 3-D groundwater flow beneath an incomplete river caused by riverside pumping[J]. Journal of Hydraulic Engineering, 1999(3): 32-37. (in Chinese) doi: 10.3321/j.issn:0559-9350.1999.03.006 [17] 曹腾飞.区域地下水评价及影响研究--以新干县地下取用水为例.南昌: 南昌大学, 2015. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D691685 CAO Tengfei. Study on regional groundwater assessment and impact--Underground water in Xingan as an example. Nanchang: Nanchang University, 2015. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D691685 -