Experimental studies of anti-erosion ability of high-performance reinforced turf on high-speed open channel
-
摘要: 现有针对高性能加筋草皮的抗侵蚀性能研究,大多建立在大规模试验基础上,重点研究允许冲刷流速和表面切应力。为了研究高速明渠水流条件下高性能加筋草皮侵蚀过程,对天然草皮和3种高性能加筋草皮共48个样品进行培植,并布置在高速明渠流的倾斜水槽中,通过不同坡度和流量分别进行间断和不间断冲刷试验,分析流速、流量和侵蚀量的关系。结果表明,间断和不间断冲刷的侵蚀速率有明显差异,说明初始冲刷引起了高性能加筋草皮的大部分侵蚀。样本侵蚀过程显示侵蚀速率随侵蚀量的增加而降低,证明明渠高速水流作用下加筋草皮存在“侵蚀上限”特征。此外,还讨论了流量和生态加筋网结构对侵蚀过程的影响,并尝试拟合了平均侵蚀速率与水流表面流速的关系。Abstract: The high-performance turf-reinforced mat (HPTRM) is a new type of strengthening material which has been widely used in recent years to protect the vegetation linings and enhance their anti-erosion ability. The existing studies on the erosion resistance of the vegetated HPTRM systems are mainly based on the large-scale tests and focus on the permissible flow velocity and shear stress. In order to study the erosion process of the vegetated HPTRM system under the high-speed open channel flow conditions, a total of 48 specimens of natural vegetation and three types of vegetated HPTRM systems are cultivated. In a special flume designed to generate the high-speed open-channel flow, continuous and discontinuous flushing tests are carried out under different slopes and discharges. During the testing, the erosion depths of specimens, the flow discharges and flow surface velocities are recorded. The differences in erosion rates between the continuous and discontinuous tests indicate that the first flushing of the flow, which means the process of no flow to flow, induces most of the erosion of the vegetated HPTRM systems. The erosion processes of the specimens show a decrease of the erosion rate with the increase in the erosion depth, which proves the existence of the "upper limit" of erosion, which can be explained by the exposure of HPTRM and consequent increase of the anti-erosion ability. We have also discussed the influences of the flow discharges and HPTRM structures on the erosion processes, and try to fit the relationships between the average erosion rate and the flow surface velocity with the linear relationships.
-
表 1 试验组次设置
Table 1. Test cases for each type of HPTRM
测试仪坡度 不同单宽流量下的间断冲刷 不间断冲刷(1 386 m3·h-1·m-1) 1 098 m3·h-1·m-1 1 260 m3·h-1·m-1 1 386 m3·h-1·m-1 1:3 组次1 组次2 组次3 组次4 1:2 组次5 组次6 组次7 组次8 1:1 组次9 组次10 组次11 组次12 -
[1] 俞孔坚, 李迪华, 袁弘, 等. "海绵城市"理论与实践[J].城市规划, 2015, 39(6): 26-36. http://d.old.wanfangdata.com.cn/Periodical/csgh201506004 YU Kongjian, LI Dihua, YUAN Hong, et al. "Sponge city": theory and practice[J]. City Planning Review, 2015, 39(6): 26-36. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/csgh201506004 [2] 黄岳文, 余雄.新奥尔良防洪工程体系破坏原因分析与研究[J].海洋工程, 2008, 26(2): 112-118, 123. doi: 10.3969/j.issn.1005-9865.2008.02.015 HUANG Yuewen, YU Xiong. Reconnaissance of New Orleans levee system failure and its implications for levee system design[J]. Ocean Engineering, 2008, 26(2): 112-118, 123. (in Chinese) doi: 10.3969/j.issn.1005-9865.2008.02.015 [3] Erosion Control Technology Council. "What are rolled erosion control products?"[EB/OL]. (2016-12-17)[2018-04-02]http://www.ectc.org/rolled-erosion-control-products-recps-〉(Nov. 17, 2016). [4] 徐一斐, 陈盛彬, 邓阿琴.三维植被网预制草毯草种的筛选与配方试验研究[J].安徽农学通报(上半月刊), 2011, 17(9): 178-180. http://d.old.wanfangdata.com.cn/Periodical/ahnxtb201109078 XU Yifei, CHEN Shengbin, DENG Aqin. On sifting and formulation-research of grass seed of prefabricated grass blanket of three-dimensional vegetation network[J]. Anhui Agricultural Science Bulletin, 2011, 17(9): 178-180. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/ahnxtb201109078 [5] NELSON R J. Research quantifies performance of TRM reinforced vegetation[C]//RATHE E M. Proceedings of the Sessions of the Geo-Frontiers 2005 Congress, 2005: 1-11. [6] HEWLETT H W M, BOORMAN L A, BRAMLEY L A. Design of reinforced grass waterways[M]. 1987. [7] MEER J V D, SCHRIJVER R, HARDEMAN B, et al. Guidance on erosion resistance of inner slopes of dikes from three years of testing with the Wave Overtopping Simulator[J]. Coasts, Marine Structures and Breakwaters Adapting to Chang, 2009, 2: 460-473. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC0213152200 [8] STEENDAM G J, PROVOOST Y, MEER J V D. Destructive wave overtopping and wave run-up tests on grass covered slopes of real dikes[J]. Sborník Vědeckych Prací Lékaské Fakulty Karlovy University, 2012, 24(5): 601-6. [9] THORNTON C, MEER J W, HUGHES S A. Testing levee slope resiliency at the new Colorado State University wave overtopping test facility[C]//Proc Coastal Structures, 2011: 167-178. [10] HUGHES S, THORNTON C, SCHOLL B, et al. Wave overtopping resiliency of grass and turf reinforcement mats on sandy soils[C]//ICE Breakwater Conf Proceedings, 2013. [11] PAN Y, LI L, AMINI F, et al. Full-scale HPTRM-strengthened levee testing under combined wave and surge overtopping conditions: overtopping hydraulics, shear stress, and erosion analysis[J]. Journal of Coastal Research, 2013, 29(1): 182-200. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0229213654/ [12] PAN Y, LI L, AMINI F, et al. Influence of three levee-strengthening systems on overtopping hydraulic parameters and hydraulic equivalency analysis between steady and intermittent overtopping[J]. Journal of Waterway Port Coastal and Ocean Engineering, 2013, 139(4): 256-266. doi: 10.1061/(ASCE)WW.1943-5460.0000179 [13] PAN Y, LI L, AMINI F, et al. Overtopping erosion and failure mechanism of earthen levee strengthened by vegetated HPTRM system[J]. Ocean Engineering, 2015, 96: 139-148. doi: 10.1016/j.oceaneng.2014.12.012 [14] YUAN S, TANG H, LI L, et al. Combined wave and surge overtopping erosion failure model of HPTRM levees: accounting for grass-mat strength[J]. Ocean Engineering, 2015, 109: 256-269. doi: 10.1016/j.oceaneng.2015.09.005 [15] 胡玉植, 潘毅, 陈永平.海堤背水坡加筋草皮抗冲蚀能力试验研究[J].水利水运工程学报, 2015(1): 49-55. http://slsygcxb.cnjournals.org/ch/reader/view_abstract.aspx?file_no=201601008&flag=1 HU Yuzhi, PAN Yi, CHEN Yongping. Experimental studies on scouring resistance of reinforced turf on land-side slope[J]. Hydro-Science and Engineering, 2015(1): 49-55. (in Chinese) http://slsygcxb.cnjournals.org/ch/reader/view_abstract.aspx?file_no=201601008&flag=1 [16] STURM T W. Open channel hydraulics[J]. Design Hydrology and Sedimentology for Small Catchments, 2001, 54(6): B107. http://d.old.wanfangdata.com.cn/Periodical/sdlxyjyjz-e200903001 [17] DIPLAS P, DANCEY C L, CELIK A O, et al. The role of impulse on the initiation of particle movement under turbulent flow conditions[J]. Science, 2008, 322(5902):717-720. doi: 10.1126/science.1158954 [18] VAN DER MEER J W, HARDEMAN B, STEENDAM G J, et al. Flow depths and velocities at crest and landward slope of a dike, in theory and with the wave overtopping simulator[C]//Proceedings of 32nd Conference on Coastal Engineering, Shanghai, China, 2010. -