Influence of concrete heel shape on stress and deformation of concrete slab of a dam
-
摘要: 镶嵌混凝土面板堆石坝是一种可以改善高面板堆石坝应力变形的新坝型。利用平面有限元法分析计算不同坝踵混凝土结构高度、下游坡比、趾板位置时面板的应力变形和周边缝变位,进而探究镶嵌混凝土面板堆石坝中坝踵混凝土结构对面板应力变形的影响。结果表明:当坝踵混凝土结构高度从坝高的27%增加到坝高的40%时,面板的挠度和顺坡向应力都大幅减小;坝踵混凝土结构的下游坡比从1:0.4放缓到1:0.7时,面板应力变形变化幅度较小;趾板位置在坝踵混凝土顶部从下游向上游移动时,面板与趾板之间的周边缝张开变位和错动变位大幅减小了68.7%和85.8%。说明设置坝踵混凝土结构可有效改善面板的应力变形。
-
关键词:
- 镶嵌混凝土面板堆石坝 /
- 坝踵混凝土结构 /
- 应力变形 /
- 有限元
Abstract: The embedded concrete composite dam is a new type of dam which can improve the stress and deformation conditions of a high concrete face rockfill dam. Further analysis of the influence of the concrete structure of the heel of the dam on the stress and deformation of the embedded concrete composite dam has been investigated in this paper, based on analyses of the stress deformation of the concrete slabs and the displacement of the peripheral joints of different heights and the downstream slope ratio and the different positions of the plinth. The results have shown that when the height of the concrete structure of the heel of the dam was increased from 0.27 times to 0.4 times the height of the dam, the deflection and the stress along the slope of the face slab were greatly reduced, and that when the downstream slope ratio of the concrete structure of the heel of the dam was reduced from 1:0.4 to 1:0.7, the variation in the stress and deformation of the face slab was relatively small. When the position of the toe plate was changed from downstream to upstream at the top of the concrete heel of the dam, the opening displacement and dislocation displacement of the peripheral joint between the face slab and the toe slab decreased significantly by 68.7% and 85.8% respectively. The results show that the stress and deformation of the face slab could be effectively improved by setting the concrete structure of the heel of the dam. -
表 1 筑坝材料邓肯-张E-B模型参数
Table 1. Parameters of Duncan-Chang model (E-B) of dam materials
坝料 Ρd/(kg·m-3) φ0/° c/MPa k n Rf kb m Kur 垫层料 2 250 54.8 0 1 023.3 0.32 0.61 500.0 0.25 2 046.6 过渡层料 2 170 56.2 0 1 438.6 0.23 0.72 791.5 0.02 2 877.2 主堆石料 2 150 56.6 0 1 412.5 0.22 0.72 772.2 0.04 2 825.0 次堆石料 2 150 52.2 0 800.0 0.26 0.62 400.0 0.29 1 600.0 表 2 计算方案
Table 2. Calculation schemes
计算方案 坝踵混凝土结构 趾板位置 高度/m 上游坡比 下游坡比 方案1 40 1:0.2 1:0.7 a=0, b=50 cm, c=50 cm 方案2 50 1:0.2 1:0.7 a=0, b=50 cm, c=50 cm 方案3 60 1:0.2 1:0.4 a=0, b=50 cm, c=50 cm 方案4 60 1:0.2 1:0.5 a=0, b=50 cm, c=50 cm 方案5 60 1:0.2 1:0.7 a=30 cm, b=70 cm, c=0 方案6 60 1:0.2 1:0.7 a=20 cm, b=70 cm, c=10 cm 方案7 60 1:0.2 1:0.7 a=10 cm, b=70 cm, c=20 cm 方案8 60 1:0.2 1:0.7 a=0, b=70 cm, c=30 cm 方案9 60 1:0.2 1:0.7 a=0, b=50 cm, c=50 cm 表 3 各方案面板应力变形结果
Table 3. Summary of stress and deformation results of panel
计算方案 挠度/cm 顺坡向应力/MPa 周边缝变位/cm 压应力 拉应力 张开 错动 不同坝高 方案1 29.11 7.43 1.42 6.38 2.76 方案2 25.44 6.17 1.38 6.11 2.72 方案9 21.68 3.91 1.28 5.02 2.54 不同坡比 方案3 24.72 6.15 1.32 5.89 2.69 方案4 23.44 5.70 1.29 5.53 2.63 方案9 21.68 3.91 1.28 5.02 2.54 不同趾板位置 方案5 20.99 2.85 0.51 16.03 17.86 方案6 20.47 3.05 0.74 9.92 6.92 方案7 21.07 3.57 0.88 8.97 5.58 方案8 21.18 3.83 1.21 7.06 3.07 方案9 21.68 3.91 1.28 5.02 2.54 -
[1] 党发宁, 杨超, 薛海斌, 等.河谷形状对面板堆石坝变形特性的影响研究[J].水利学报, 2014, 45(4): 435-442. http://d.old.wanfangdata.com.cn/Periodical/slxb201404008 DANG Faning, YANG Chao, XUE Haibin, et al. The effect of valley topography on deformation properties of CFRD[J].Journal of Hydraulic Engineering, 2014, 45(4): 435-442. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/slxb201404008 [2] 孔宪京, 张宇, 邹德高.高面板堆石坝面板应力分布特性及其规律[J].水利学报, 2013, 44(6): 631-639. http://d.old.wanfangdata.com.cn/Periodical/slxb201306001 KONG Xianjing, ZHANG Yu, ZOU Degao. Study on the stress distribution characteristics of face-slab of high concrete-face rock-fill dam[J].Journal of Hydraulic Engineering, 2013, 44(6): 631-639. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/slxb201306001 [3] 杨泽艳, 周建平, 王富强, 等.中国混凝土面板堆石坝发展30年[J].水电与抽水蓄能, 2017, 3(1): 1-5, 12. http://d.old.wanfangdata.com.cn/Periodical/dbgcytgcs201701001 YANG Zeyan, ZHOU Jianping, WANG Fuqiang, et al. The 30 years' development of concrete face rockfill dam in China[J].Hydropower and Pumped Storage, 2017, 3(1): 1-5, 12. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/dbgcytgcs201701001 [4] 高莲士, 宋文晶, 汪召华.高面板堆石坝变形控制的若干问题[J].水利学报, 2002(5): 3-8. doi: 10.3321/j.issn:0559-9350.2002.05.002 GAO Lianshi, SONG Wenjing, WANG Zhaohua. Discussion on deformation control of high CFRD[J].Journal of Hydraulic Engineering, 2002(5): 3-8. (in Chinese) doi: 10.3321/j.issn:0559-9350.2002.05.002 [5] 陆希, 徐宏璐.镶嵌组合坝混凝土坝体结构体型探讨[J].西北水电, 2014(6): 30-33, 45. doi: 10.3969/j.issn.1006-2610.2014.06.008 LU Xi, XU Honglu. Study on concrete dam structural outline of embedded composite dam[J].Northwest Hydropower, 2014(6): 30-33, 45. (in Chinese) doi: 10.3969/j.issn.1006-2610.2014.06.008 [6] 陆希, 姚栓喜, 周恒, 等.一种扶壁式复式结构面板堆石坝: CN206495188U[P].2017-09-15. LU Xi, YAO Shuanxi, ZHOU Heng, et al. Abutting wall type composite structure concrete faced rockfill dam: CN206495188U[P].2017-09-15. (in Chinese) [7] 蔡新合, 姚栓喜, 雷艳, 等.一种高弹模垫座式复合坝: CN104120686A[P]. 2014. CAI Xinhe, YAO Shuanxi, LEI Yan, et al. A kind of high elastic modulus cushion composite dam: CN104120686A[P]. 2014. (in Chinese) [8] 李昌彩.水布垭面板堆石坝前期关键技术研究[M].北京:中国水利水电出版社, 2005. LI Changcai. Research on the key technology of Shuibuya CFRD[M]. Beijing: China Water Power Press, 2005. (in Chinese) [9] 李守德, 俞洪良. Goodman接触面单元的修正与探讨[J].岩石力学与工程学报, 2004, 23(15): 2628-2631. doi: 10.3321/j.issn:1000-6915.2004.15.027 LI Shoude, YU Hongliang. Modification of Goodman interface element[J].Chinese Journal of Rock Mechanics and Engineering, 2004, 23(15): 2628-2631. (in Chinese) doi: 10.3321/j.issn:1000-6915.2004.15.027 [10] 熊欢, 王清友, 高希章, 等.沙湾水电站一期围堰塑性混凝土防渗墙应力变形分析[J].水力发电学报, 2010, 29(2): 197-203, 189. http://d.old.wanfangdata.com.cn/Periodical/slfdxb201002034 XIONG Huan, WANG Qingyou, GAO Xizhang, et al. Stress deformation analysis of plastic concrete cutoff wall for the first stage cofferdam of Shawan hydropower station[J].Journal of Hydroelectric Engineering, 2010, 29(2): 197-203, 189. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/slfdxb201002034 [11] 李征, 张林, 陈媛, 等.不同地质条件下重力坝扬压力等效模拟方法分析[J].四川大学学报(工程科学版), 2016, 48(增刊2): 93-99. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20162016072100199313 LI Zheng, ZHANG Lin, CHEN Yuan, et al. Study on the equivalent method for simulating the uplift pressure of gravity dam based on different foundations[J].Journal of Sichuan University(Engineering Science Edition), 2016, 48(Suppl2): 93-99. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20162016072100199313 [12] 李珍.重力坝深层抗滑稳定问题的非线性有限元法研究[D].南京: 河海大学, 2007. LI Zhen. Analysis of deep anti-slide of gravity dam based on nonlinear finite element method[D]. Nanjing: Hohai University, 2007. (in Chinese) -