Sensitivity analysis of influencing factors on concrete shear strength
-
摘要: 针对高寒地区混凝土结构发生的冻融破坏现象,以及混凝土结构会发生剪切破坏的特点,利用大型多功能动静力电液伺服三轴试验机和剪切盒装置进行了混凝土剪切试验,研究分析了法向应力、应变速率和冻融循环次数对混凝土剪切强度发展规律的影响。通过定义无量纲形式的敏感性函数,比较了法向应力、应变速率和冻融循环次数3种因素变化对混凝土剪切强度的敏感性,并对各影响因素的敏感性进行排序。分析结果表明:①混凝土剪切强度随法向应力的增大而提高,其试验曲线分为线性上升段、非线性上升段和稳定段3个阶段;混凝土内部微裂缝和孔隙中的自由水是引起混凝土剪切强度随应变速率增大而增大的重要因素;混凝土孔隙率增大是混凝土剪切强度随冻融循环次数的增加而降低的原因。②当混凝土冻融循环次数不高于50次、法向应力不大于35 MPa且加载的应变速率为10-5/s~10-3/s时,冻融循环次数对混凝土剪切强度的敏感性影响较大,法向应力对混凝土剪切强度的敏感性影响较小,应变速率对混凝土剪切强度的敏感性影响最弱。Abstract: In view of the freeze-thaw damage phenomenon of concrete structures in the alpine region and the characteristics of shear failure of concrete structures, the shear tests on concrete are carried out by using a large multifunctional dynamic and static electro-hydraulic servo triaxial testing system and a shear box device. The effects of normal stress, strain rates and freeze-thaw cycle times on the shear strength of concrete are studied and analyzed in this paper. By defining dimensionless sensitivity function, the sensitivities of the normal stress, strain rate and freeze-thaw cycle times to the shear strength of concrete are compared, and the sensitivity of each influencing factor is ranked. The analysis results show that: ① The shear strength of concrete increases with the increase of the normal stress. Its testing curves can be divided into three stages, i.e. linear rising stage, nonlinear rising stage and stable stage. The free water in the micro-cracks and pores of concrete is one of the important factors leading to the increase of the concrete shear strength with the increase of strain rate. The increase of concrete porosity is the reason that the shear strength of concrete decreases with the increase of the freeze-thaw cycles. ② When the freeze-thaw cycle times of concrete are not higher than 50 times. The normal stress is not more than 35 MPa and the loading strain rate is 10-5/s~10-3/s, the freeze-thaw cycle times have great influences on the sensitivity of the shear strength of concrete. The normal stress of concrete has little effect on the sensitivity of the concrete shear strength, while the strain rate has the least effect on the sensitivity of the concrete shear strength.
-
Key words:
- concrete /
- shear strength /
- normal stress /
- freeze-thaw cycle /
- strain rate /
- sensitivity analysis
-
表 1 混凝土剪切强度影响因素的取值范围与敏感性系数范围
Table 1. Range of factors affecting concrete shear strength and range of sensitivity coefficients
参数 取值范围 敏感性系数波动范围 法向应力 0~35 MPa 0~0.292 应变速率 10-5/s~10-3/s 3.259×10-7~3.259×10-5 冻融循环次数 0~50次 0~2.706 -
[1] 张琦, 过镇海.砼抗剪强度和剪切变形的研究[J].建筑结构学报, 1992, 13(5): 17-24. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xwqh201303050000049058 ZHANG Qi, GUO Zhenhai. Investigation on shear and shear strain of concrete[J]. Journal of Building Structures, 1992, 13(5): 17-24. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xwqh201303050000049058 [2] 李平先, 张雷顺.冻融循环作用下混凝土的剪切强度试验研究[J].郑州大学学报(工学版), 2004, 25(4): 12-15. doi: 10.3969/j.issn.1671-6833.2004.04.004 LI Pingxian, ZHANG Leishun. Experimental research on shear strength of concrete subjected to freezing-and-thawing[J]. Journal of Zhengzhou University(Engineering Science), 2004, 25(4): 12-15. (in Chinese) doi: 10.3969/j.issn.1671-6833.2004.04.004 [3] 郭艳华, 刘建红, 李志业.钢纤维混凝土压剪破坏研究[J].建筑材料学报, 2008, 11(2): 152-156. doi: 10.3969/j.issn.1007-9629.2008.02.005 GUO Yanhua, LIU Jianhong, LI Zhiye. Study on compression-shear failure of steel fiber reinforced concrete[J]. Journal of Building Materials, 2008, 11(2): 152-156. (in Chinese) doi: 10.3969/j.issn.1007-9629.2008.02.005 [4] 王怀亮, 宋玉普.多轴应力条件下碾压混凝土层面抗剪强度试验研究[J].水利学报, 2011, 42(9): 1095-1109. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=slxb201109013 WANG Huailiang, SONG Yupu. Mechanical properties of roller compacted concrete under multiaxial stress state[J]. Journal of Hydraulic Engineering, 2011, 42(9): 1095-1109. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=slxb201109013 [5] 王刚, 刘黎萍, 孙立军.沥青混凝土抗剪强度及抗压回弹模量试验研究[J].建筑材料学报, 2012, 15(2): 279-282. doi: 10.3969/j.issn.1007-9629.2012.02.026 WANG Gang, LIU Liping, SUN Lijun. Research on shearing strength and compressive resilient modulus experiment of asphalt concrete[J]. Journal of Building Materials, 2012, 15(2): 279-282. (in Chinese) doi: 10.3969/j.issn.1007-9629.2012.02.026 [6] 宋玉普, 闻伟, 王怀亮.碾压混凝土压剪强度分析[J].水利与建筑工程学报, 2012, 10(6): 44-47. doi: 10.3969/j.issn.1672-1144.2012.06.011 SONG Yupu, WEN Wei, WANG Huailiang. Analysis on compression-shear strength of roller compacted concrete[J]. Journal of Water Resources and Architectural Engineering, 2012, 10(6): 44-47. (in Chinese) doi: 10.3969/j.issn.1672-1144.2012.06.011 [7] 丛宇, 孔亮, 郑颖人, 等.混凝土材料剪切强度的试验研究[J].混凝土, 2015(5): 40-45. doi: 10.3969/j.issn.1002-3550.2015.05.011 CONG Yu, KONG Liang, ZHENG Yingren, et al. Experimental study on shear strength of concrete[J]. Concrete, 2015(5): 40-45. (in Chinese) doi: 10.3969/j.issn.1002-3550.2015.05.011 [8] 郭辉, 鹿群, 张丽娟, 等.钢纤维再生混凝土剪切性能的正交实验研究[J].世界地震工程, 2016, 32(2): 107-112. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sjdzgc201602016 GUO Hui, LU Qun, ZHANG Lijuan, et al. Shear behavior of steel fiber recycled concrete by orthogonal analysis[J]. World Earthquake Engineering, 2016, 32(2): 107-112. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sjdzgc201602016 [9] 章光, 朱维申.参数敏感性分析与试验方案优化[J].岩土力学, 1993, 14(1): 51-58. http://www.cnki.com.cn/Article/CJFDTOTAL-YTLX199301005.htm ZHANG Guang, ZHU Weishen. Parameter sensitivity analysis and optimizing for test programs[J]. Rock and Soil Mechanics, 1993, 14(1): 51-58. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-YTLX199301005.htm [10] WANG Hao, WANG Licheng, SONG Yupu, et al. Influence of free water on dynamic behavior of dam concrete under biaxial compression[J]. Construction and Building Materials, 2016(112): 222-231. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=79aa972fdd1ac360333f3664f168bd64 [11] LIMA L J, VIOLINI D, ZERBINO R. Fracture toughness and fracture energy of concrete[M]. Amsterdam: Elsevier Science, 1986: 219-222. [12] WANG H L, LI Q B. Prediction of elastic modulus and Poisson's ratio for unsaturated concrete[J]. International Journal of Solids and Structures, 2007, 44(5): 1370-1379. doi: 10.1016/j.ijsolstr.2006.06.028 [13] 田威, 张鹏坤, 谢永利, 等.冻融环境下基于CT技术混凝土孔隙结构的三维分布特征[J].长安大学学报(自然科学版), 2016, 36(3): 49-55. doi: 10.3969/j.issn.1671-8879.2016.03.008 TIAN Wei, ZHANG Pengkun, XIE Yongli, et al. 3D distribution characteristics on concrete porous structure under freeze-thaw environment based on CT technique[J]. Journal of Chang'an University(Natural Science Edition), 2016, 36(3): 49-55. (in Chinese) doi: 10.3969/j.issn.1671-8879.2016.03.008 [14] 宾峰.冻融循环作用下岩石动态力学特性及微观机理研究[D].长沙: 中南大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10533-1014398695.htm BIN Feng. Study on dynamic mechanical properties and microstructure mechanism of rock under freeze-thaw cycles[D]. Changsha: Central South University, 2014. (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10533-1014398695.htm [15] 许玉娟, 周科平, 李杰林, 等.冻融岩石核磁共振检测及冻融损伤机制分析[J].岩土力学, 2012, 33(10): 3001-3005. http://d.old.wanfangdata.com.cn/Periodical/ytlx201210020 XU Yujuan, ZHOU Keping, LI Jielin, et al. Study of rock NMR experiment and damage mechanism analysis under freeze-thaw condition[J]. Rock and Soil Mechanics, 2012, 33(10): 3001-3005. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/ytlx201210020 [16] RYSHKEWITCH E. Compression strength of porous sintered alumina and zirconia[J]. Journal of the American Ceramic Society, 2010, 36(2):65-68. http://cn.bing.com/academic/profile?id=3c6bbc4a1e0a03d55c8df6fd5c34b8e9&encoded=0&v=paper_preview&mkt=zh-cn -