Flow-induced vibration response analysis of high arch dam discharge structure based on improved wavelet threshold-EMD algorithm
-
摘要: 基于高拱坝泄流结构实测振动响应数据资料,针对泄流激励作用下不可避免混有各种噪声进而影响结构工作模态识别精度的问题,提出了一种基于改进的小波阈值-经验模态分解(EMD)联合算法的滤波降噪方法。以拱坝泄流结构实测振动响应资料为基础,利用改进的小波阈值算法滤除大部分高频白噪声,降低EMD分解的边界积累效应,进行EMD分解,通过去趋势波动分析(DFA)方法进一步滤除白噪声及低频水流噪声。工程实例分析结果表明,与小波分析、EMD方法相比,该方法具有更好的降噪效果,能精确滤除泄流结构实测振动响应信号中的低频水流噪声及白噪声,最大程度地保留信号中有效特征信息,并且为拱坝泄流结构在噪声干扰下提取有效信息提供了捷径,为坝体结构的安全监控打下了基础。Abstract: Based on the measured vibration response data of the high arch dam discharge structure, aiming at the problems of various mixed noises under the action of discharge excitation, which will affect the accuracy of the structural working mode identification, a new filtering and de-noising method based on the improved wavelet threshold-empirical mode decomposition (EMD) joint algorithm is proposed in this paper. According to the measured vibration response data of the arch dam, the improved wavelet threshold is used to filter out most of the high frequency white noise, and reduce the boundary accumulation effect of EMD decomposition. After EMD decomposition, a detrended fluctuation analysis method (DFA) is utilized to further filter the white noise and the low-frequency current noise. The analysis results of engineering examples show that this method has better noise reduction effect compared with the wavelet analysis and the EMD method. It can accurately filter the low-frequency water flow noise and the white noise in the measured vibration response signal of the discharge structure. At the same time, the effective characteristic information in the signal is retained to the greatest extent. This method has provided convenience for extracting effective information of the arch dam discharge structure under noise interference and laid a foundation for the safety monitoring of the dam body structures.
-
表 1 拱坝原型泄洪振动测试工况
Table 1. Test working conditions of flood releasing-induced vibration of prototype arch dam
工况 开孔 相对开度 上游水位/m 下游水位/m 1 3, 4#中孔 100% 1 195.79 1 016.20 2 3, 4#中孔与1#泄洪洞 100% 1 195.91 1 016.26 3 3, 4#表孔与1#泄洪洞 表孔100%,泄洪洞60.6% 1 196.01 1 014.50 4 2, 3, 4, 5#表孔与1#泄洪洞 表孔100%,泄洪洞60.6% 1 196.01 1 014.71 5 2, 3, 4, 5, 6#表孔与1#泄洪洞 表孔100%,泄洪洞60.6% 1 195.99 1 016.03 表 2 IMF分量的DFA指数
Table 2. DFA index of each IMF component
IMF分量 DFA指数 Imf.1 0.488 2 Imf.2 0.497 8 Imf.3 0.531 8 Imf.4 0.656 6 Imf.5 0.818 8 Imf.6 0.824 9 Imf.7 0.934 8 Imf.8 0.970 7 Imf.9 0.984 5 -
[1] LI HK, WANG Y J, WEI B W. Inversion algorithm for the whole prototype dynamic displacement field of a high arch dam based on limited measuring points[J]. Journal of Vibration and Control, 2016, 23(20): 3431-3447. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1177/1077546316630078 [2] 李成业, 刘昉, 马斌, 等.基于改进HHT的高拱坝模态参数识别方法研究[J].水力发电学报, 2012, 31(1): 48-55. http://d.old.wanfangdata.com.cn/Periodical/slfdxb201201010 LI Chengye, LIU Fang, MA Bin, et al. Study on modal parameters identification method of high arch dam based on improved Hilbert-Huang transform[J]. Journal of Hydroelectric Engineering, 2012, 31(1): 48-55. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/slfdxb201201010 [3] 司祯祯.傅里叶变换与小波变换在信号去噪中的应用[J].电子设计工程, 2011, 19(4): 155-157. doi: 10.3969/j.issn.1674-6236.2011.04.045 SI Zhenzhen. Application of Fourier transform and wavelet transform in signal de-noising[J]. Electronic Design Engineering, 2011, 19(4): 155-157. (in Chinese) doi: 10.3969/j.issn.1674-6236.2011.04.045 [4] 杨丽娟, 张白桦, 叶旭桢.快速傅里叶变换FFT及其应用[J].光电工程, 2004, 31(增刊1): 1-3, 7. http://d.old.wanfangdata.com.cn/Periodical/gdgc2004z1001 YANG Lijuan, ZHANG Baihua, YE Xuzhen. Fast Fourier transform and its applications[J]. Opto-Electronic Engineering, 2004, 31(Suppl1): 1-3, 7. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gdgc2004z1001 [5] 唐进元, 陈维涛, 陈思雨, 等.一种新的小波阈值函数及其在振动信号去噪分析中的应用[J].振动与冲击, 2009, 28(7): 118-121, 217. doi: 10.3969/j.issn.1000-3835.2009.07.025 TANG Jinyuan, CHEN Weitao, CHEN Siyu, et al. Wavelet-based threshold vibration signal de-noising with a new adaptive thresholding function[J]. Journal of Vibration and Shock, 2009, 28(7): 118-121, 217. (in Chinese) doi: 10.3969/j.issn.1000-3835.2009.07.025 [6] 刘志松.基于小波分析的信号去噪方法[J].浙江海洋学院学报(自然科学报), 2011, 30(2): 150-154. http://d.old.wanfangdata.com.cn/Periodical/zjhyxyxb-zr201102012 LIU Zhisong. Signal de-noising based on the wavelet transform[J]. Journal of Zhejiang Ocean University (Natural Science), 2011, 30(2): 150-154. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/zjhyxyxb-zr201102012 [7] LIU Xiuping, YUAN Wei, HAN Lili, et al. X-ray pulsar signal de-noising for impulse noise using wavelet packet[J]. Aerospace Science and Technology, 2017, 64: 147-153. doi: 10.1016/j.ast.2017.01.024 [8] 赵雯雯, 曾兴雯.一种新的EMD去噪方法[J].电子科技, 2008, 21(5): 30-32, 36. doi: 10.3969/j.issn.1007-7820.2008.05.009 ZHAO Wenwen, ZENG Xingwen. A new signal de-noising method based on Empirical Mode Decomposition (EMD)[J]. Electronic Science and Technology, 2008, 21(5): 30-32, 36. (in Chinese) doi: 10.3969/j.issn.1007-7820.2008.05.009 [9] HE X H, HUA X G, CHEN Z Q, et al. EMD-based random decrement technique for modal parameter identification of an existing railway bridge[J]. Engineering Structures, 2011, 33(4): 1348-1356. doi: 10.1016/j.engstruct.2011.01.012 [10] DYBALA J, ZIMROZ R. Rolling bearing diagnosing method based on Empirical Mode Decomposition of machine vibration signal[J]. Applied Acoustics, 2014, 77(3): 195-203. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=74fe6c920bbd5f6442638ae0b7db0236 [11] 张建伟, 江琦, 赵瑜, 等.一种适用于泄流结构振动分析的信号降噪方法[J].振动与冲击, 2015, 34(20): 179-184. http://d.old.wanfangdata.com.cn/Periodical/zdycj201520030 ZHANG Jianwei, JIANG Qi, ZHAO Yu, et al. De-noising method for vibration signal of flood discharge structures[J]. Journal of Vibration and Shock, 2015, 34(20): 179-184. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/zdycj201520030 [12] 程知, 何枫, 张巳龙, 等.趋势项调制的小波-经验模态分解联合方法用于大气相干长度廓线去噪[J].光学学报, 2017, 37(12): 15-26. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201712002 CHENG Zhi, HE Feng, ZHANG Silong, et al. Combination method of wavelet and empirical mode decomposition with trend modulation used for atmospheric coherent length profile de-noising[J]. Acta Optica Sinica, 2017, 37(12): 15-26. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201712002 [13] 李成业, 练继建, 刘昉, 等. EMD与小波阈值联合滤波方法的改进及其在泄流结构振动分析中的应用[J].振动与冲击, 2013, 32(19): 63-70, 110. doi: 10.3969/j.issn.1000-3835.2013.19.012 LI Chengye, LIAN Jijian, LIU Fang, et al. An improved filtering method based on EMD and wavelet threshold and its application in vibration analysis for a flood discharge structure[J]. Journal of Vibration and Shock, 2013, 32(19): 63-70, 110. (in Chinese) doi: 10.3969/j.issn.1000-3835.2013.19.012 [14] 于金涛, 赵树延, 王祁.基于经验模态分解和小波变换声发射信号去噪[J].哈尔滨工业大学学报, 2011, 43(10): 88-92. doi: 10.11918/j.issn.0367-6234.2011.10.019 YU Jintao, ZHAO Shuyan, WANG Qi. De-noising of acoustic emission signals based on empirical mode decomposition and wavelet transform[J]. Journal of Harbin Institute of Technology, 2011, 43(10): 88-92. (in Chinese) doi: 10.11918/j.issn.0367-6234.2011.10.019 [15] 胡爱军, 孙敬敬, 向玲.经验模态分解中的模态混叠问题[J].振动、测试与诊断, 2011, 31(4): 429-434, 532-533. doi: 10.3969/j.issn.1004-6801.2011.04.006 HU Aijun, SUN Jingjing, XIANG Ling. Modal mixing in empirical mode decomposition[J]. Journal of Vibration, Measurement and Diagnosis, 2011, 31(4): 429-434, 532-533. (in Chinese) doi: 10.3969/j.issn.1004-6801.2011.04.006 [16] WEI B W, YUAN D Y, LI H K, et al. Combination forecast model for concrete dam displacement considering residual correction[J]. Structural Health Monitoring, 2019, 18(1): 232-244. doi: 10.1177/1475921717748608 [17] WEI B W, YUAN D Y, LI H K, et al. Modified hybrid forecast model considering chaotic residual errors for dam deformation[J]. Structural Control and Health Monitoring, 2018, 25(8): e2188. doi: 10.1002/stc.2188 [18] YANG J, LI P, YANG Y, et al. An improved EMD method for modal identification and a combined static-dynamic method for damage detection[J]. Journal of Sound and Vibration, 2018, 420: 242-260. doi: 10.1016/j.jsv.2018.01.036 [19] 荣钦彪, 刘昉, 宿策, 等. EMD密集模态识别研究及在电站厂房中的应用[J].水力发电学报, 2017, 36(6): 103-113. http://d.old.wanfangdata.com.cn/Periodical/slfdxb201706012 RONG Qinbiao, LIU Fang, SU Ce, et al. EMD identification of closely-spaced modes and its application to power plant analysis[J]. Journal of Hydroelectric Engineering, 2017, 36(6): 103-113. (in Chinese)) http://d.old.wanfangdata.com.cn/Periodical/slfdxb201706012 [20] 李炜, 陈晓辉, 毛海杰.小波阈值消噪算法中自适应确定分解层数研究[J].计算机仿真, 2009, 26(3): 311-313, 336. doi: 10.3969/j.issn.1006-9348.2009.03.080 LI Wei, CHEN Xiaohui, MAO Haijie. A study of adaptive optimal decomposition level in threshold de-noising algorithm based on wavelet transform[J]. Journal of Computer Simulation, 2009, 26(3): 311-313, 336. (in Chinese)) doi: 10.3969/j.issn.1006-9348.2009.03.080 [21] MERT A, AKAN A. Detrended fluctuation thresholding for empirical mode decomposition based de-noising[J]. Digital Signal Processing, 2014, 32: 48-56. doi: 10.1016/j.dsp.2014.06.006 [22] 何文平, 吴琼, 成海英, 等.不同滤波方法在去趋势波动分析中去噪的应用比较[J].物理学报, 2011, 60(2): 029203. http://d.old.wanfangdata.com.cn/Periodical/wlxb201102123 HE Wenping, WU Qiong, CHENG Haiying, et al. Comparison of applications of different filter methods for de-noising detrended fluctuation analysis[J]. Acta Phys Sinica, 2011, 60(2): 029203. (in Chinese)) http://d.old.wanfangdata.com.cn/Periodical/wlxb201102123 [23] 刘付斌, 高相铭.基于EEMD与DFA的Hurst指数估计[J].测控技术, 2013, 32(10): 98-101. doi: 10.3969/j.issn.1000-8829.2013.10.027 LIU Fubin, GAO Xiangming. Estimation of hurst index based on EEMD and DFA[J]. Measurement and Control Technology, 2013, 32(10): 98-101. (in Chinese) doi: 10.3969/j.issn.1000-8829.2013.10.027 -