Mechanical properties and failure criterion of freeze-thaw deteriorated concrete under compressive-shear stress
-
摘要: 为研究冻融劣化混凝土动静态抗剪性能,进行了不同冻融循环次数(0,10,25,35和50次)后混凝土在不同法向应力(0,3,6,9和12 MPa)下的压剪强度试验,混凝土强度等级为C30。研究分析了冻融循环次数和法向应力对混凝土剪切强度、峰值应变和黏聚力与摩擦系数的影响。分析结果表明:①随着冻融循环次数的增加,混凝土在相同法向应力状态下的剪切强度均逐渐降低,而且法向应力越大,剪切强度随冻融循环次数的增加而降低的程度越小;当冻融循环次数相同且法向应力不大于单轴抗压强度50%时,剪切强度随法向应力的增大而增大,且冻融劣化程度会影响该增幅效果;②在法向应力相同时,剪切峰值变形随冻融循环次数的增加呈线性增长趋势,对某一冻融循环次数,法向应力的存在增大了混凝土的剪切峰值变形;③摩擦系数和黏聚力都随冻融劣化程度的加深而降低,黏聚力大幅度降低是由于冻融劣化作用起主导作用所致。基于上述试验分析和八面体应力空间二次抛物线形式的压剪破坏准则,构建了平面应力状态下考虑冻融循环次数的混凝土压剪破坏准则。Abstract: In order to study the dynamic and static shear properties of the freeze-thaw deteriorated concrete, the compressive-shear strength tests on concrete are carried out under different normal stresses (0, 3, 6, 9 and 12 MPa) after different freeze-thaw cycles (0, 10, 25, 35 and 50 times), and the concrete strength grade is C30. The impacts of the freeze-thaw cycles and normal stress on the shear strength, peak strain, cohesion and friction coefficients of concrete are studied. The analysis results show that:① With the increase of the freeze-thaw cycles, the shear strength of concrete decreases gradually under the same normal stress status. The greater the normal stress is, the smaller the shear strength of concrete decrease degree with the increase of the freeze-thaw cycles. When the number of the freeze-thaw cycles is the same and the normal stress is less than 50%of the uniaxial compressive strength, the shear strength increases with the increase of the normal stress, and the deterioration of freezing and thawing will affect the results of this increase. ② When the normal stress is the same, the shear peak deformation increases linearly with the increase of the freeze-thaw cycles. For a certain freeze-thaw cycle, the existence of the normal stress increases the shear peak deformation of concrete. ③ The coefficients of friction and cohesion decrease with the deepening of the deterioration degree of freeze-thaw, and the significant decrease of cohesion is due to the dominant role of freezing and thawing deterioration. ④ On the basis of the above experimental analysis and the compression-shear failure criterion of octahedron stress space in the form of quadratic parabola, a compression-shear failure criterion of concrete considering the number of freeze-thaw cycles in plane stress state is established.
-
Key words:
- concrete /
- freeze-thaw cycle /
- normal stress /
- compression-shear state /
- failure criterion
-
表 1 不同冻融循环次数和法向应力水平下混凝土剪切强度
Table 1. Shear strength of concrete under different freeze-thaw cycle times and normal stress levels
冻融循环次数/次 不同法向应力下的剪切强度/MPa 0 MPa 3MPa 6MPa 9MPa 12MPa 0 4.699 8.510 11.682 14.416 17.129 10 3.386 6.761 10.191 12.415 16.917 25 2.994 6.480 10.109 12.070 14.663 35 1.685 5.691 9.372 11.219 12.680 50 1.468 5.448 7.921 9.590 12.670 表 2 不同冻融循环次数下混凝土的黏聚力与摩擦系数
Table 2. Cohesive stress and friction coefficients of concrete under different freeze-thaw cycles
冻融循环
次数/次黏聚力/
MPa黏聚力
降幅/%摩擦系数 摩擦系数
降幅/%0 5.634 - 1.036 - 10 4.154 26.27 1.003 3.19 25 4.081 27.56 0.973 6.08 35 4.052 28.12 0.916 11.49 50 2.323 58.77 0.936 9.65 表 3 不同冻融循环次数混凝土抗压强度和抗拉强度
Table 3. Compressive strength and tensile strength of concrete during different freeze-thaw cycle times
冻融循环次数/次 抗压强度/MPa 抗拉强度/MPa 0 45.39 4.10 10 38.27 3.59 25 32.38 2.63 35 27.35 2.01 50 19.80 1.06 表 4 不同冻融循环次数下模型参数计算结果
Table 4. Calculation results of model parameters under different freeze-thaw cycle times
冻融循环
次数/次模型参数 a b c 0 0.084 52 -4.097 87 15.755 45 10 0.072 24 -4.517 20 17.144 29 25 0.075 49 -4.066 66 15.763 09 35 0.050 30 -4.655 34 17.755 87 50 0.060 53 -3.659 77 14.677 09 -
[1] HASAN M, UEDA T, SATO Y. Stress-strain relationship of frost-damaged concrete subjected to fatigue loading[J]. Journal of Materials in Civil Engineering, 2008, 20(1): 37-45. doi: 10.1061/(ASCE)0899-1561(2008)20:1(37) [2] PENTTALA V, AL-NESHAWY F. Stress and strain state of concrete during freezing and thawing cycles[J]. Cement and Concrete Research, 2002, 32(9): 1407-1420. doi: 10.1016/S0008-8846(02)00785-8 [3] 刘博文, 彭刚, 王孝政, 等.不同冻融循环次数混凝土单轴压缩试验[J].水利水运工程学报, 2017(1): 32-36. http://slsygcxb.cnjournals.org/ch/reader/view_abstract.aspx?file_no=201701005&flag=1 LIU Bowen, PENG Gang, WANG Xiaozheng, et al. Experimental studies on dynamic properties of concrete under different freeze-thaw cycles[J]. Hydro-Science and Engineering, 2017(1): 32-36. (in Chinese) http://slsygcxb.cnjournals.org/ch/reader/view_abstract.aspx?file_no=201701005&flag=1 [4] 柳琪, 彭刚, 徐童淋, 等.冻融劣化混凝土循环加卸载外包络线及能量演化[J].水利水运工程学报, 2017(6): 85-91. http://slsygcxb.cnjournals.org/ch/reader/view_abstract.aspx?file_no=201706012&flag=1 LIU Qi, PENG Gang, XU Tonglin, et al. Study of outer envelope curve and energy evolution for freeze-thaw deteriorated concrete under cyclic loading and unloading test[J]. Hydro-Science and Engineering, 2017(6): 85-91. (in Chinese) http://slsygcxb.cnjournals.org/ch/reader/view_abstract.aspx?file_no=201706012&flag=1 [5] 曹大富, 富立志, 杨忠伟.冻融循环作用下混凝土的受拉性能研究[J].建筑材料学报, 2012, 15(1): 48-52. doi: 10.3969/j.issn.1007-9629.2012.01.009 CAO Dafu, FU Lizhi, YANG Zhongwei. Experimental study on tensile properties of concrete after freeze-thaw cycles[J]. Journal of Building Materials, 2012, 15(1): 48-52. (in Chinese) doi: 10.3969/j.issn.1007-9629.2012.01.009 [6] 徐童淋, 彭刚, 杨乃鑫, 等.混凝土冻融劣化后动态单轴抗压特性试验研究[J].水利水运工程学报, 2017(6): 69-78. http://slsygcxb.cnjournals.org/ch/reader/view_abstract.aspx?file_no=201706010&flag=1 XU Tonglin, PENG Gang, YANG Naixin, et al. Experimental studies of dynamic uniaxial compressive properties of concrete after freeze-thaw deterioration[J]. Hydro-Science and Engineering, 2017(6): 69-78. (in Chinese) http://slsygcxb.cnjournals.org/ch/reader/view_abstract.aspx?file_no=201706010&flag=1 [7] 覃丽坤, 宋玉普, 陈浩然, 等.双轴拉压混凝土在冻融循环后的力学性能及破坏准则[J].岩石力学与工程学报, 2005, 24(10): 1740-1745. doi: 10.3321/j.issn:1000-6915.2005.10.018 QIN Likun, SONG Yupu, CHEN Haoran, et al. Mechanical property and failure criterion of concrete under biaxial tension and compression after freeze-thaw cycling[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(10): 1740-1745. (in Chinese) doi: 10.3321/j.issn:1000-6915.2005.10.018 [8] 宋玉普, 陈飞, 张众, 等.冻融环境下引气混凝土双轴拉-压强度和破坏准则的试验研究[J].水利学报, 2006, 37(8): 932-937. doi: 10.3321/j.issn:0559-9350.2006.08.006 SONG Yupu, CHEN Fei, ZHANG Zhong, et al. Strength reduction of air-entrained concrete under biaxial tension-compression after freeze-thaw cycles and its failure criterion[J]. Journal of Hydraulic Engineering, 2006, 37(8): 932-937. (in Chinese) doi: 10.3321/j.issn:0559-9350.2006.08.006 [9] 王立成, 刘汉勇.海水冻融后轻骨料混凝土的双轴压压强度和变形性能[J].水利学报, 2006, 37(2): 189-194. doi: 10.3321/j.issn:0559-9350.2006.02.010 WANG Licheng, LIU Hanyong. Strength and deformation characteristics of lightweight aggregate concrete under biaxial compressive stress after freeze-thaw cycling in seawater[J]. Journal of Hydraulic Engineering, 2006, 37(2): 189-194. (in Chinese) doi: 10.3321/j.issn:0559-9350.2006.02.010 [10] 宋玉普, 覃丽坤, 张众, 等.冻融循环后混凝土双轴压的试验研究[J].水利学报, 2004(1): 95-99. doi: 10.3321/j.issn:0559-9350.2004.01.018 SONG Yupu, QIN Likun, ZHANG Zhong, et al. Experimental study on concrete behavior under biaxial compression after freezing and thawing cycle[J]. Journal of Hydraulic Engineering, 2004(1): 95-99. (in Chinese) doi: 10.3321/j.issn:0559-9350.2004.01.018 [11] 田威, 张鹏坤, 谢永利, 等.冻融环境下基于CT技术混凝土孔隙结构的三维分布特征[J].长安大学学报(自然科学版), 2016(3): 49-55. doi: 10.3969/j.issn.1671-8879.2016.03.008 TIAN Wei, ZHANG Pengkun, XIE Yongli, et al. 3D distribution characteristics on concrete porous structure under freeze-thaw environment based on CT technique[J]. Journal of Chang'an University(Natural Science Edition), 2016(3): 49-55. (in Chinese) doi: 10.3969/j.issn.1671-8879.2016.03.008 [12] 宾峰.冻融循环作用下岩石动态力学特性及微观机理研究[D].长沙: 中南大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10533-1014398695.htm BIN Feng. Study on dynamic mechanical properties and microstructure mechanism of rock under freeze-thaw cycles[D]. Changsha: Central South University, 2014. (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10533-1014398695.htm [13] RYSHKEWITCH E. Compression strength of porous sintered alumina and zirconia[J]. Journal of the American Ceramic Society, 2010, 36(2): 65-68. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1111/j.1151-2916.1953.tb12837.x [14] 闻伟.碾压混凝土单轴动态和压剪静态性能试验研究[D].大连: 大连理工大学, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10141-1012394452.htm WEN Wei. Experimental research on properties of RCC under uniaxial dynamic and compression-shear static stress state[D]. Dalian: Dalian University of Technology, 2012. (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10141-1012394452.htm [15] 宋玉普, 闻伟, 王怀亮.碾压混凝土压剪强度分析[J].水利与建筑工程学报, 2012, 10(6): 44-47. doi: 10.3969/j.issn.1672-1144.2012.06.011 SONG Yupu, WEN Wei, WANG Huailiang. Analysis on compression-shear strength of roller compacted concrete[J]. Journal of Water Resources and Architectural Engineering, 2012, 10(6): 44-47. (in Chinese) doi: 10.3969/j.issn.1672-1144.2012.06.011 [16] BRESLER B, PISTER K S. Strength of concrete under combined stresses[J]. ACI Structural Journal, 1958, 1(1): 41-56. [17] 商怀帅, 宋玉普, 覃丽坤.普通混凝土冻融循环后性能的试验研究[J].混凝土与水泥制品, 2005(2): 9-11. doi: 10.3969/j.issn.1000-4637.2005.02.003 SHANG Huaishuai, SONG Yupu, QIN Likun. Experimental study on the performance of ordinary concrete after freeze-thaw cycle[J]. China Concrete and Cement Products, 2005(2): 9-11. (in Chinese)) doi: 10.3969/j.issn.1000-4637.2005.02.003 -