Sensitivity analysis and application research of water quality improvement effect based on synchronous prototype observation
-
摘要: 将无锡运东大包围调水试验过程划分为背景期、调度期和恢复期3个阶段,通过长系列河网水动力-水质多要素同步原型观测,获得河网干支流水动力特性,掌握不同控制断面水质指标的变化规律,并分析水动力过程对不同水质指标改善的敏感性。在此基础上,基于引水流量、汊道分流比、河网流速、水位以及水质改善幅度控制阈值,论证白屈港-严埭港-转水河-环城河-古运河沿线主引水通道的可行性与存在的问题,构建区域精细化河网水动力模型,在模型率定验证基础上模拟了高水位单通道自引泵排、低水位单通道泵引泵排、双通道自引泵排运行方案,比选了不同生态补水方案的水动力与水质效果,为无锡运东大包围畅流活水方案制定提供了研究方法与数据支持。Abstract: The Wuxi Yundong surrounding water diversion test is divided into three phases: background period, dispatch period and recovery period. Through the long-series river network hydrodynamic-water quality multi-factor synchronous prototype observation, the hydrodynamic characteristics of main tributaries are obtained. The changes of water quality indicators at different control sections are mastered, and the sensitivity of different water quality indicators affected by the hydrodynamic process is analyzed. On this basis, in view of the diversion flow, ramp split ratio, river network flow rate, water level and water quality improvement range control threshold, the feasibility and existing problems of the main water diversion channel along Baiqu Port-Yanyu Port-Tuanshui River-Huancheng River-Grand Canal are demonstrated, and a regional refined river network hydrodynamic model is constructed. On the basis of model calibration and verification, several operation plans related to the cyanobacteria period are simulated, including the high-water level single-channel self-priming pumping, low-water level single-channel pumping and dual-channel self-priming pumping. The hydrodynamic and water quality effects of different ecological water replenishment schemes are selected to provide research methods and data support for the development of the Wuxi Yundong water scheme.
-
表 1 运东大包围生态补水原型观测方案
Table 1. Original plan of ecological hydration surrounded by Yundong
编号 工程名称 所属分区 背景期
(5月8—9日)调度期
(5月9—12日)恢复期
(5月12—14日)1-1 严埭港枢纽 运东
大包围开启 开启 开启 1-2 利民桥枢纽 开启 泵15 m3/s 开启 1-3 仙蠡桥枢纽 开启 关闭 开启 1-4 江尖枢纽 开启 关闭 开启 1-5 北兴塘枢纽 开启 关闭 开启 1-6 九里河枢纽 开启 关闭 开启 1-7 伯渎港枢纽 开启 关闭 开启 2-1 太堡墩闸 北塘联圩 开启 关闭 开启 2-2 一号桥闸 开启 关闭 开启 2-3 顾桥港闸 开启 关闭 开启 2-4 百子桥泵 泵3 m3/s 关闭 泵3 m3/s 2-5 新西泵 泵2 m3/s 关闭 泵2 m3/s 2-6 三里桥泵 泵3 m3/s 关闭 泵3 m3/s 3-1 纳新桥泵 耕渎圩 泵3 m3/s 关闭 泵3 m3/s 3-2 九里基泵 泵2 m3/s 关闭 泵2 m3/s 4-1 1602闸 广塘联圩 开启 关闭 开启 4-2 范家桥泵 泵2 m3/s 关闭 泵2 m3/s 5-1 兴隆闸 兴隆圩 开启 关闭 开启 6-1 塔影河泵 塔影圩 泵3 m3/s 关闭 泵3 m3/s 注:所有枢纽、闸泵调控由区域所在市、区水利主管部门统筹协调,统一调度。 表 2 模型率定验证结果
Table 2. Model calibration results
监测断面 所在河道 流量相对
误差/%水位最大
误差/cmEns R2 CS-1 严埭港 8.5 2 0.95 0.92 CS-2 北兴塘 3 0.96 0.94 CS-3 九里河 1 0.94 0.92 CS-4 伯渎港 1 0.96 0.91 CS-5 古运河 2 0.95 0.94 CS-6 梁溪河 2 0.95 0.92 CS-7 环城河 3 0.94 0.92 CS-8 严埭港 7.0 2 0.48 0.53 CS-9 埝埭港 9.6 2 CS-10 转水河 5.3 2 0.74 0.73 CS-11 转水河 5.8 1 0.84 0.83 CS-12 环城河 7.9 3 0.75 0.74 CS-13 古城河 8.8 2 0.70 0.66 CS-14 北兴塘 6.3 2 0.72 0.76 CS-15 九里河 8.3 2 0.81 0.81 CS-16 九里河 7.0 3 0.57 0.50 CS-17 桐桥港 8.5 2 0.76 0.77 CS-18 伯渎港 4.8 3 0.75 0.70 CS-19 伯渎港 5.5 3 0.85 0.85 CS-20 古运河 7.4 2 0.70 0.69 注:空白项表示对应断面作为边界控制点,或是该断面没有水位、流量监测。 表 3 不同工况下生态补水方案
Table 3. Ecological water replenishment scheme under different working conditions
序号 方案名称 引水口调度 出水口调度 引水流量/
(m3·s-1)沿程
水位/m出口目标水质
改善时间/h方案1 高水位单通道
自引泵排严埭港
节制闸开启利民桥、仙蠡桥
各开1台泵43.6 3.63~3.41 20 方案2 低水位单通道
泵引泵排严埭港
开启2台泵利民桥、仙蠡桥
各开1台泵30.0 3.68~3.57 29 方案3 低水位双通道
自引泵排~1严埭港节制闸
与船闸开启利民桥开1台泵 28.8 3.49~3.37 30 方案4 低水位双通道
自引泵排~2严埭港节制闸
与船闸开启利民桥、仙蠡桥
各开1台泵40.8 3.49~3.40 21 -
[1] 童朝锋, 岳亮亮, 郝嘉凌, 等.南京市外秦淮河水质模拟及引调水效果[J].水资源保护, 2012, 28(6): 49-54. doi: 10.3969/j.issn.1004-6933.2012.06.011 TONG Chaofeng, YUE Liangliang, HAO Jialing, et al. Water quality simulation and water diversion effect analysis of external Qinhuai River in Nanjing[J]. Water Resources Protection, 2012, 28(6): 49-54. (in Chinese) doi: 10.3969/j.issn.1004-6933.2012.06.011 [2] 陈志和, 陈晓宏, 杜建, 等.河网地区水环境引水调控及其效果预测[J].水资源保护, 2012, 28(3): 16-21. doi: 10.3969/j.issn.1004-6933.2012.03.003 CHEN Zhihe, CHEN Xiaohong, DU Jian, et al. Water diversion and regulation of water environment and effect forecast in river network region[J]. Water Resources Protection, 2012, 28(3): 16-21. (in Chinese) doi: 10.3969/j.issn.1004-6933.2012.03.003 [3] 梁媛, 许健, 麻林.利用模糊综合评判法分析由太湖引水后黄浦江水质的变化[J].甘肃农业大学学报, 2014, 49(1): 116-120. doi: 10.3969/j.issn.1003-4315.2014.01.021 LIANG Yuan, XU Jian, MA lin. Application of fuzzy comprehensive evaluation approach in Huangpu River water quality assessment after water diversion from Taihu Lake[J]. Journal of Gansu Agricultural University, 2014, 49(1): 116-120. (in Chinese) doi: 10.3969/j.issn.1003-4315.2014.01.021 [4] 陈建标, 钱小娟, 朱友银, 等.南通市引江调水对河网水环境改善效果的模拟[J].水资源保护, 2014, 30(1): 38-42, 94. doi: 10.3969/j.issn.1004-6933.2014.01.008 CHEN Jianbiao, QIAN Xiaojuan, ZHU Youyin, et al. Simulation of improvement of water environment in river network of Nantong City by water diversion from Yangtze River[J]. Water Resources Protection, 2014, 30(1): 38-42, 94. (in Chinese) doi: 10.3969/j.issn.1004-6933.2014.01.008 [5] 陈振涛, 滑磊, 金倩楠.引水改善城市河网水质效果评估研究[J].长江科学院院报, 2015, 32(7): 45-51. http://d.old.wanfangdata.com.cn/Periodical/cjkxyyb201507011 CHEN Zhentao, HUA Lei, JIN Qiannan. Assessing the efficacy of water diversion to improve water quality in city river network[J]. Journal of Yangtze River Scientific Research Institute, 2015, 32(7): 45-51. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/cjkxyyb201507011 [6] 崔广柏, 陈星, 向龙, 等.平原河网区水系连通改善水环境效果评估[J].水利学报, 2017, 48(12): 1429-1437. http://d.old.wanfangdata.com.cn/Periodical/slxb201712005 CUI Guangbo, CHEN Xing, XIANG Long, et al. Evaluation of water environment improvement by interconnected river network in plain area[J]. Journal of Hydraulic Engineering, 2017, 48(12): 1429-1437. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/slxb201712005 [7] 贾海峰, 杨聪, 张玉虎, 等.城镇河网水环境模拟及水质改善情景方案[J].清华大学学报(自然科学版), 2013, 53(5): 665-672, 728. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qhdxxb201305014 JIA Haifeng, YANG Cong, ZHANG Yuhu, et al. Simulations of a water quality improvement for urban river networks[J]. Journal of Tsinghua University (Science and Technology), 2013, 53(5): 665-672, 728. (in Chinese)) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qhdxxb201305014 [8] 张秀菊, 丁凯森, 杨凯.新江海河河网地区水量水质联合调度模拟及引水方案[J].水电能源科学, 2017, 35(1): 31-34. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sdnykx201701008 ZHANG Xiuju, DING Kaisen, YANG Kai. Water quantity-quality joint regulation model and water diversion scheme in Xinjianghaihe River network region[J]. Water Resources and Power, 2017, 35(1): 31-34. (in Chinese)) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sdnykx201701008 [9] 李晓, 唐洪武, 王玲玲, 等.平原河网地区闸泵群联合调度水环境模拟[J].河海大学学报(自然科学版), 2016, 44(5): 393-399. http://d.old.wanfangdata.com.cn/Periodical/hhdxxb201605005 LI Xiao, TANG Hongwu, WANG Lingling, et al. Simulation of water environment under joint operation of gates and pumps in plain river[J]. Journal of Hohai University (Natural Sciences), 2016, 44(5): 393-399. (in Chinese)) http://d.old.wanfangdata.com.cn/Periodical/hhdxxb201605005 [10] 张蔚.平原河网的水动力学及泥沙模型研究[J].水利水运工程学报, 2004(4): 70-74. doi: 10.3969/j.issn.1009-640X.2004.04.013 ZHANG Wei. Hydrodynamic and sediment model study of plain river network[J]. Hydro-Science and Engineering, 2004(4): 70-74. (in Chinese) doi: 10.3969/j.issn.1009-640X.2004.04.013 [11] 柳杨, 范子武, 刘国庆, 等.基于Infoworks RS的新沭河溃堤洪水风险分析[J].水电能源科学, 2018, 36(8): 47-51. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sdnykx201808012 LIU Yang, FAN Ziwu, LIU Guoqing, et al. Risk analysis of levee-breach flood for Xinshu River based on Infoworks RS[J]. Water Resources and Power, 2018, 36(8): 47-51. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sdnykx201808012 [12] 张小稳, 刘国庆, 范子武.基于水动力—水质同步原型观测的城市生态补水方案研究[J].水资源开发与管理, 2019(4): 31-36. http://d.old.wanfangdata.com.cn/Periodical/gjsjyjykf201904009 ZHANG Xiaowen, LIU Guoqing, FAN Ziwu. Research on urban ecological water replenishment scheme based on hydrodynamic-water quality synchronous prototype observation[J]. Water Resources Development and Management, 2019(4): 31-36. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gjsjyjykf201904009 -