Analysis of vertical bearing capacity of single pile foundations considering spatial variability of soil parameters
-
摘要: 岩土体是自然界的产物,其性质具有较大的空间变异性。在已有土体随机场模拟研究成果基础上,考虑了土体强度参数的变异系数和相关距离,通过数值方法研究了竖向荷载作用下土体空间变异性对桩基础承载力的影响。结果表明,考虑土体空间变异性后,桩基承载力的中值都小于确定性分析得到的桩基承载力;随着变异系数和相关距离的增大,桩基承载力的不确定性越来越大,实际工程中需重点关注土体参数变异性大的工况。考虑土体强度参数空间变异性的桩基竖向承载力分布规律可以用对数正态分布曲线来描述,当样本数足够多时,可依此获取任一荷载下桩基础的失效概率。Abstract: Geotechnical materials are products of the nature, and their properties have great spatial variability. Based on the existing research results of soil random field simulation methods, considering the variability coefficients of soil strength parameters and correlation distance, the influences of soil spatial variability on the vertical bearing capacity of the pile foundation under vertical loading is investigated by the numerical method. The analysis results show that the median value of the bearing capacity of the pile foundation is smaller than that obtained by deterministic analysis, considering the spatial variability of soil. With the increase of coefficient of variation and the correlation distance, the uncertainty of the bearing capacity of the pile foundation becomes more and more. It is necessary to pay attention to the large variability of the soil parameters in practical engineering. The distribution law of the vertical bearing capacity of the pile foundation considering the spatial variability of soil strength parameters can be described by lognormal distribution curves. When the number of samples is enough, the totality can be inferred from the samples, and the failure probability of the pile foundation under any load can be obtained accordingly.
-
表 1 工况设置及编号
Table 1. Test programs and numbers
变异系数/% 相关距离/m 水平 竖向 水平 竖向 水平 竖向 8 4 8 8 16 8 10 X8Y4Cov01 X8Y8Cov01 X16Y8Cov01 20 X8Y8Cov02 30 X8Y4Cov03 X8Y8Cov03 X16Y8Cov03 40 X8Y8Cov04 50 X8Y4Cov05 X8Y8Cov05 X16Y8Cov05 -
[1] JGJ 94—2008建筑桩基技术规范[S]. JGJ 94—2008 Code for techniques of pile foundation work[S]. (in Chinese) [2] GB 50007—2011建筑地基基础设计规范[S]. GB 50007—2011 Specification for foundation design of building foundation[S]. (in Chinese) [3] SHINOZUKA M, DEODATIS G. Simulation of multi-dimensional Gaussian stochastic fields by spectral representation[J]. Applied Mechanics Reviews, 1996, 49(1): 29-53. doi: 10.1115/1.3101883 [4] MELINK T, KORELC J. Stability of Karhunen-Loève expansion for the simulation of Gaussian stochastic fields using Galerkin scheme[J]. Probabilistic Engineering Mechanics, 2014, 37: 7-15. doi: 10.1016/j.probengmech.2014.03.006 [5] 李典庆, 蒋水华, 周创兵, 等.考虑参数空间变异性的边坡可靠度分析非侵入式随机有限元法[J].岩土工程学报, 2013, 35(8): 1413-1422. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytgcxb201308005 LI Dianqing, JIANG Shuihua, ZHOU Chuangbing, et al. Reliability analysis of slopes considering spatial variability of soil parameters using non-intrusive stochastic finite element method[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1413-1422. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytgcxb201308005 [6] FENTON G A, GRIFFITHS D V. Three-dimensional probabilistic foundation settlement[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(2): 232-239. doi: 10.1061/(ASCE)1090-0241(2005)131:2(232) [7] 苏成, 徐瑞, 范学明.二维随机场离散的曲边单元局部平均法[J].华南理工大学学报(自然科学版), 2008, 36(3): 104-107, 120. doi: 10.3321/j.issn:1000-565X.2008.03.022 SU Cheng, XU Rui, FAN Xueming. Local average method based on curved-side elements for discretization of 2D random fields[J]. Journal of South China University of Technology (Nature Science Edition), 2008, 36(3): 104-107, 120. (in Chinese) doi: 10.3321/j.issn:1000-565X.2008.03.022 [8] 蒋水华, 李典庆, 周创兵, 等.考虑自相关函数影响的边坡可靠度分析[J].岩土工程学报, 2014, 36(3): 508-518. http://d.old.wanfangdata.com.cn/Periodical/ytgcxb201403014 JIANG Shuihua, LI Dianqing, ZHOU Chuangbing, et al. Slope reliability analysis considering effect of autocorrelation functions[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 508-518. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/ytgcxb201403014 [9] WU Y, GAO Y, LI D, et al. Study of the approximate approaches to the POD based spectral representation method[J]. Science China Technological Sciences, 2013, 56(4): 970-979. doi: 10.1007/s11431-013-5180-y [10] GAO Y, ZHU D, ZHANG F, et al. Stability analysis of three-dimensional slopes under water drawdown conditions[J]. Canadian Geotechnical Journal, 2014, 51(11): 1355-1364. doi: 10.1139/cgj-2013-0448 [11] 李典庆, 祁小辉, 周创兵, 等.考虑参数空间变异性的无限长边坡可靠度分析[J].岩土工程学报, 2013, 35(10): 1799-1806. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytgcxb201310005 LI Dianqing, QI Xiaohui, ZHOU Chuangbing, et al. Reliability analysis of infinite soil slopes considering spatial variability of soil parameters[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 1799-1806. (in Chinese)) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytgcxb201310005 [12] 祁小辉, 李典庆, 曹子君, 等.考虑地层变异的边坡稳定不确定性分析[J].岩土力学, 2017, 38(5): 1385-1396. http://d.old.wanfangdata.com.cn/Periodical/ytlx201705021 QI Xiaohui, LI Dianqing, CAO Zijun, et al. Uncertainty analysis of slope stability considering geological uncertainty[J]. Rock and Soil Mechanics, 2017, 38(5): 1385-1396. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/ytlx201705021 [13] CHO S E, PARK H C. Effect of spatial variability of cross-correlated soil properties on bearing capacity of strip footing[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2010, 34(1): 1-26. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ba0544d7b9bdf0cca5a7abe4a893e395 [14] SIVAKUMAR BABU G L, SRIVASTAVA A, MURTHY D S N. Reliability analysis of the bearing capacity of a shallow foundation resting on cohesive soil[J]. Canadian Geotechnical Journal, 2006, 43(2): 217-223. doi: 10.1139/t05-099 [15] LI L, LI J H, HUANG J S, et al. Bearing capacity of spudcan foundations in a spatially varying clayey seabed[J]. Ocean Engineering, 2017, 143: 97-105. doi: 10.1016/j.oceaneng.2017.05.026 [16] 刘润, 闫澍旺.渤海湾地基土随机场特性及可靠度分析[J].岩土工程学报, 2004, 26(4): 464-467. doi: 10.3321/j.issn:1000-4548.2004.04.007 LIU Run, YAN Shuwang. Random field model and reliability analysis of foundation soil in Bohai gulf[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(4): 464-467. (in Chinese) doi: 10.3321/j.issn:1000-4548.2004.04.007 [17] 赵春风, 徐超, 高大钊.基于随机场模型的桩基竖向承载力可靠性分析[J].地下空间, 2004, 24(4): 449-452, 464. doi: 10.3969/j.issn.1673-0836.2004.04.006 ZHAO Chunfeng, XU Chao, GAO Dazhao. Reliability analysis of vertical bearing capacity of pile based on random field theory[J]. Chinese Journal of Underground Space and Engineering, 2004, 24(4): 449-452, 464. (in Chinese) doi: 10.3969/j.issn.1673-0836.2004.04.006 [18] HALDAR S, BABU G L S. Effect of soil spatial variability on the response of laterally loaded pile in undrained clay[J]. Computers and Geotechnics, 2008, 35(4): 537-547. doi: 10.1016/j.compgeo.2007.10.004 [19] 张子富, 杨文智, 朱海涛.特高压输电线路杆塔基础承载力可靠度分析[J].天津大学学报(自然科学与工程技术版), 2015, 48(增刊1): 142-146. http://d.old.wanfangdata.com.cn/Periodical/tianjdxxb2015z1021 ZHANG Zifu, YANG Wenzhi, ZHU Haitao. Reliability analysis of bearing-capacity of tower foundations designed for ultra high voltage transmission lines[J]. Journal of Tianjin University (Science and Technology), 2015, 48(Suppl1): 142-146. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/tianjdxxb2015z1021 [20] TEIXEIRA A, HONJO Y, CORREIA A G, et al. Sensitivity analysis of vertically loaded pile reliability[J]. Soils and Foundations, 2012, 52(6): 1118-1129. doi: 10.1016/j.sandf.2012.11.025 [21] 洪昌华, 龚晓南.基于稳定分析法的碎石桩复合地基承载力的可靠度[J].水利水运科学研究, 2000(1): 30-35. doi: 10.3969/j.issn.1009-640X.2000.01.005 HONG Changhua, GONG Xiaonan. Relibility of bearing capacity of composite foundation based on stabilization analysis[J]. Journal of Nanjing Hydraulic Research Institute, 2000(1): 30-35. (in Chinese) doi: 10.3969/j.issn.1009-640X.2000.01.005 -