Research on the influencing factors of scour depth around submerged cylinder under combined action of wave and current
-
摘要: 淹没圆柱在海洋工程中运用广泛,局部冲刷对此类建筑物的安全有较大影响。为掌握该类型建筑物在波流作用下的冲刷特性,在波流水槽内开展了一系列试验研究。试验将圆柱模型安装在波流水槽中部的沙槽内,沙槽内铺设中值粒径0.22 mm的无黏性沙,形成平底海床。试验中圆柱处于淹没情况,改变入射波流条件,观测多种波流作用下,不同高度淹没圆柱周围的局部冲刷深度发展过程,分析了多种无量纲参数对局部冲刷深度的影响。结果表明:当KC数不变时,冲刷深度s/D随着相对流速Ucw和Fr的增大而增大,当Fr增大到一定程度时(Fr>0.80),冲刷深度s/D趋于稳定; Ucw在固定范围内时,冲刷深度s/D随KC数的增加而增加,增长速率逐渐变慢; 引入淹没因子Ks,得到了淹没圆柱与非淹没圆柱的冲刷深度计算关系式。Abstract: Submerged cylinders are widely used in marine construction. Local scour has a great impact on the safety and stability of such buildings. In order to understand the scour characteristics of this type of building under wave and current, a series of scour experiments were carried out in the wave-current flume. The model was installed in a flat sand box in the middle of the wave-current flume, of which the surroundings were covered with non-cohesive sand of median diameter 0.22 mm. The water level is always set as submergence situation. The condition of incident wave and current was changed to observe the local scour development process around the submerged cylinder with various heights. The local scour depth was measured and recorded. A variety of dimensionless parameters were applied to analyze the data and assess their influence on the scour. The result shows that when KC number is fixed, the relative scour depth s/D increases with the relative flow velocity Ucw and Fr. When Fr increases to a certain extent (Fr>0.80), s/D tends to be stable; when Ucw is in a fixed range, depth s/D increases with KC number, and the growth rate gradually becomes slower. The submergence factor Ks gives the relationship between the scour depth of the submerged cylinder and that of the non- submerged one.
-
Key words:
- submerged cylinder /
- combined action of wave and current /
- scour depth /
- local scour
-
表 1 试验工况
Table 1. Experimental conditions
工况 Sr H/m T/s Uc/(m·s-1) Uwm/(m·s-1) Um/(m·s-1) Ucw θ KC Fr s/cm s/D 1 0 0 0 0.220 0 0.220 1.000 0.027 — 0.176 5.4 0.338 2 0 0.050 1.0 0.220 0.073 0.293 0.751 0.044 0.456 0.234 5.9 0.369 3 0 0.090 1.0 0.220 0.131 0.351 0.627 0.067 0.819 0.280 6.5 0.403 4 0.2 0 0 0.220 0 0.220 1.000 0.027 — 0.176 4.4 0.275 5 0.2 0.050 1.0 0.220 0.073 0.293 0.751 0.044 0.456 0.234 5.3 0.331 6 0.2 0.090 1.0 0.220 0.131 0.351 0.627 0.067 0.819 0.280 5.9 0.369 7 0.4 0 0 0.160 0 0.160 1.000 0.014 — 0.128 0 0 8 0.4 0.050 1.0 0.160 0.073 0.233 0.687 0.031 0.456 0.186 1.4 0.088 9 0.4 0.090 1.0 0.160 0.131 0.291 0.550 0.054 0.819 0.232 1.9 0.119 10 0.4 0.130 1.0 0.160 0.189 0.349 0.458 0.084 1.181 0.279 2.1 0.131 11 0.4 0 0 0.220 0 0.220 1.000 0.027 — 0.176 3.5 0.219 12 0.4 0.050 1.0 0.220 0.073 0.293 0.751 0.039 0.456 0.234 4.6 0.288 13 0.4 0.070 1.0 0.220 0.102 0.322 0.683 0.054 0.638 0.257 5.1 0.319 14 0.4 0.090 1.0 0.220 0.131 0.351 0.627 0.067 0.819 0.280 5.5 0.344 15 0.4 0.110 1.0 0.220 0.160 0.380 0.579 0.081 1.000 0.303 5.2 0.325 16 0.4 0.130 1.0 0.220 0.189 0.409 0.538 0.097 1.181 0.326 4.8 0.300 17 0.4 0.090 0.8 0.220 0.087 0.307 0.717 0.051 0.435 0.245 4.4 0.272 18 0.4 0.090 1.2 0.220 0.158 0.378 0.582 0.075 1.185 0.302 5.2 0.325 19 0.4 0 0 0.260 0 0.260 1.000 0.037 — 0.208 6.9 0.431 20 0.4 0.050 1.0 0.260 0.073 0.333 0.781 0.052 0.456 0.266 7.5 0.469 21 0.4 0.090 1.0 0.260 0.131 0.391 0.665 0.077 0.819 0.312 7.8 0.488 22 0.4 0.130 1.0 0.260 0.189 0.449 0.579 0.107 1.181 0.358 7.6 0.475 23 0.4 0.050 1.0 -0.220 0.073 0.293 1.497 0.039 0.456 0.234 3.8 0.238 24 0.4 0.090 1.0 -0.220 0.131 0.351 2.472 0.067 0.819 0.280 4.3 0.269 25 0.6 0 0 0.220 0 0.220 1.000 0.027 — 0.176 2.4 0.150 26 0.6 0.050 1.0 0.220 0.073 0.293 0.751 0.044 0.456 0.234 3.7 0.231 27 0.6 0.090 1.0 0.220 0.131 0.351 0.627 0.067 0.819 0.280 4.3 0.269 28 0.8 0 0 0.220 0 0.220 1.000 0.027 - 0.176 1.5 0.091 29 0.8 0.050 1.0 0.220 0.073 0.293 0.751 0.044 0.456 0.234 2.5 0.156 30 0.8 0.090 1.0 0.220 0.131 0.351 0.627 0.067 0.819 0.280 3.0 0.188 -
[1] BREUSERS H N C, NICOLLET G, SHEN H W. Local scour around cylindrical piers[J]. Journal of Hydraulic Research, 1977, 15(3): 211-252. doi: 10.1080/00221687709499645 [2] MELVILLE B W, CHIEW Y M. Time scale for local scour at bridge piers[J]. Journal of Hydraulic Engineering, 1999, 125(1): 59-65. doi: 10.1061/(ASCE)0733-9429(1999)125:1(59) [3] DARGAHI B. Controlling mechanism of local scouring[J]. Journal of Hydraulic Engineering, 1990, 116(10): 1197-1214. doi: 10.1061/(ASCE)0733-9429(1990)116:10(1197) [4] SUMER B M, FREDSØE J, CHRISTIANSEN N. Scour around vertical pile in waves[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 1992, 118(1): 15-31. doi: 10.1061-(ASCE)0733-950X(1992)118-1(15)/ [5] SUMER B M, CHRISTIANSEN N, FREDSØE J. Influence of cross section on wave scour around piles[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 1993, 119(5): 477-495. doi: 10.1061/(ASCE)0733-950X(1993)119:5(477) [6] SUMER B M, CHRISTIANSEN N, F. REDSØE J. The horseshoe vortex and vortex shedding around a vertical wall-mounted cylinder exposed to waves[J]. Journal of Fluid Mechanics, 1997, 332: 41-70. doi: 10.1017/S0022112096003898 [7] DEY S, RAIKAR R V. Characteristics of horseshoe vortex in developing scour holes at piers[J]. Journal of Hydraulic Engineering, 2007, 133(4): 399-413. doi: 10.1061/(ASCE)0733-9429(2007)133:4(399) [8] UMEDA S. Scour regime and scour depth around a pile in waves[J]. Journal of Coastal Research, 2011(64): 845-849. [9] ZHAO M, CHENG L, ZANG Z P. Experimental and numerical investigation of local scour around a submerged vertical circular cylinder in steady currents[J]. Coastal Engineering, 2010, 57(8): 709-721. doi: 10.1016/j.coastaleng.2010.03.002 [10] YAO W D, AN H W, DRAPER S, et al. Experimental investigation of local scour around submerged piles in steady current[J]. Coastal Engineering, 2018, 142: 27-41. doi: 10.1016/j.coastaleng.2018.08.015 [11] GUAN D W, CHIEW Y M, MELVILLE B W, et al. Current-induced scour at monopile foundations subjected to lateral vibrations[J]. Coastal Engineering, 2019, 144: 15-21. doi: 10.1016/j.coastaleng.2018.10.011 [12] SUMER B M, FREDSØE J. Scour around pile in combined waves and current[J]. Journal of Hydraulic Engineering, 2001, 127(5): 403-411. doi: 10.1061/(ASCE)0733-9429(2001)127:5(403) [13] CHEN G P, ZUO Q H, HUANG H L. Local scour around piles under wave action[J]. China Ocean Engineering, 2004, 18(3): 403-412. http://d.old.wanfangdata.com.cn/Periodical/zghygc-e200403007 [14] 李林普, 张日向.波流作用下大直径圆柱体基底周围最大冲刷深度预测[J].大连理工大学学报, 2003, 43(5): 676-680. doi: 10.3321/j.issn:1000-8608.2003.05.030 LI Linpu, ZHANG Rixiang. Forecast of the maximum scour depth around vertical cylinders of large diameter combined wave and current action[J]. Journal of Dalian University of Technology, 2003, 43(5): 676-680. (in Chinese) doi: 10.3321/j.issn:1000-8608.2003.05.030 [15] 齐梅兰, 李金钊, 郐艳荣.波流作用的近岸圆柱局部床面侵蚀[J].水利学报, 2015, 46(7): 783-791. http://d.old.wanfangdata.com.cn/Periodical/slxb201507005 QI Meilan, LI Jinzhao, GUI Yanrong. Solitary wave scour around a cylinder in shoaling conditions[J]. Journal of Hydraulic Engineering, 2015, 46(7): 783-791. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/slxb201507005 [16] QI W G, GAO F P. Physical modeling of local scour development around a large-diameter monopile in combined waves and current[J]. Coastal Engineering, 2014, 83: 72-81. doi: 10.1016/j.coastaleng.2013.10.007 [17] QI W G, GAO F P. Equilibrium scour depth at offshore monopile foundation in combined waves and current[J]. Science China Technological Sciences, 2014, 57(5): 1030-1039. doi: 10.1007/s11431-014-5538-9 [18] LI Y X, QI W G, GAO F P. Physical modelling of pile-group effect on the local scour in submarine environments[J]. Procedia Engineering, 2016, 166: 212-220. doi: 10.1016/j.proeng.2016.11.541 [19] CHEN L F, STAGONAS D, SANTO H, et al. Numerical modelling of interactions of waves and sheared currents with a surface piercing vertical cylinder[J]. Coastal Engineering, 2019, 145: 65-83. doi: 10.1016/j.coastaleng.2019.01.001 [20] WELZEL M, SCHENDEL A, HILDEBRANDT A, et al. Scour development around a jacket structure in combined waves and current conditions compared to monopile foundations[J]. Coastal Engineering, 2019, 152: 103515. doi: 10.1016/j.coastaleng.2019.103515 [21] MATUTANO C, NEGRO V, LÓPEZ-GUTIÉRREZ J, et al. Scour prediction and scour protections in offshore wind farms[J]. Renewable Energy, 2013, 57: 358-365. doi: 10.1016/j.renene.2013.01.048 [22] ESCOBAR A, NEGRO V, LÓPEZ-GUTIÉRREZ J S, et al. Assessment of the influence of the acceleration field on scour phenomenon in offshore wind farms[J]. Renewable Energy, 2019, 136: 1036-1043. doi: 10.1016/j.renene.2018.09.096 [23] DEY S, RAIKAR R V, ROY A. Scour at submerged cylindrical obstacles under steady flow[J]. Journal of Hydraulic Engineering, 2008, 134(1): 105-109. doi: 10.1061/(ASCE)0733-9429(2008)134:1(105) -