Model tests of gravel soil slope under rainfall and slope toe immersion
-
摘要: 降雨是诱发边坡失稳的重要因素,为此开展了含砾量分别为10%,20%和40%的含砾土坡的坡面降雨和坡脚浸泡的模型试验。利用体积含水率和吸力传感器测试了含砾土坡的水土特性,观测了边坡湿润锋的发展过程,利用PIV技术研究了边坡的位移变形过程;通过控制坡脚水位及坡顶后续加载研究了坡脚浸泡作用下土坡的沉降变形规律。试验结果表明:降雨条件下,含砾量越高,土坡坡面侵蚀发育越缓慢,边坡的细粒土越容易达到完全饱和状态;坡土饱和后,含砾量10%的土坡主要以坡面侵蚀和变形为主,不易发生整体破坏,含砾量20%和40%的坡土均发生了整体滑移破坏。坡脚浸泡过程中,含砾量越高,边坡变形量越小,在水位下降过程中基质吸力恢复越快,在浸水过程中边坡吸力丧失范围越小。在坡脚浸泡及后续坡顶加载作用下,含砾量10%的土坡会产生较大变形,含砾量20%的土坡最容易发生破坏,含砾量40%的土坡稳定性良好。Abstract: Landslide disaster is the main geological disaster faced by China at present, and rainfall is an important factor to induce slope instability. The model tests of rainfall and slope toe immersion on gravel soil slope with 10%, 20% and 40% gravel contents were conducted. The soil and water parameters of gravel soil slope were tested by volume moisture sensor and suction sensor. The development processes of wetting front of slope were observed. The displacement and deformation characteristics of slope were studied by PIV technology. By controlling water level and loading conditions, the law of settlement and deformation of soil slope under slope toe immersion was studied. The results showed that under rainfall condition, the higher the gravel content was, the slower the erosion development of the slope surface was, the easier the fine-grained soil of the slope to reach full saturation state was; after slope soil was saturated, the strength decrease of slope soil with 20% gravel content was the most, and the slope was most likely to have the disposable integral damage; the surface of soil slope with 40% gravel content was destroyed first, then the slope shoulder began to slide, which caused the large-scale sliding failure of the whole slope; the soil slope with 10% gravel content was mainly eroded and deformed in slope surface; slope erosion and deformation were the main variation of soil slope with 10% gravel content, less prone to overall damage. During the immersion of slope toe, the higher the gravel content were, the smaller the deformation of the slope was, the better the drainage characteristics of the slope was, and the faster the matrix suction recovery was during the water level decline; the lower the gravel content was, the larger the suction loss range of the slope was in the process of slope toe immersion. Under the action of slope toe immersion and slope top loading, soil slope with 20% gravel content was most vulnerable to failure; soil slope with 10% gravel content would produce large deformation; soil slope with 40% gravel content had good stability.
-
Key words:
- soil slope /
- slope rainfall /
- slope toe immersion /
- soil and water parameters /
- model test
-
表 1 不同含砾量坡土的基本物理力学参数及饱和作用下抗剪强度参数下降比例
Table 1. Basic physical and mechanical parameters of slope soil with different gravel contents and decreasing ratios of shear strength parameters under saturation condition
含砾量/% 最大干密度/(g·cm-3) 最优含水率/% 内摩擦角/° 黏聚力/kPa 饱和渗透系数/(cm·s-1) 饱和后内摩擦角下降比例/% 饱和后黏聚力下降比例/% 非饱和 饱和 非饱和 饱和 10 1.722 19.28 17.10 10.66 31.8 20.0 8.787×10-6 37.66 37.11 20 1.880 17.80 17.66 16.55 55.0 13.7 3.597×10-5 5.72 75.09 40 1.986 15.12 22.86 20.40 84.7 40.2 4.228×10-4 10.74 52.54 -
[1] 章诗芳, 王玉芬, 贾蓓, 等.中国2005-2016年地质灾害的时空变化及影响因素分析[J].地球信息科学学报, 2017, 19(12): 1567-1574. http://d.old.wanfangdata.com.cn/Periodical/dqxxkx201712003 ZHANG Shifang, WANG Yufen, JIA Bei, et al. Analysis of spatial and temporal variations and influencing factors of geological disasters in China from 2005 to 2016[J]. Journal of Geo-information Science, 2017, 19(12): 1567-1574. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/dqxxkx201712003 [2] 曾铃, 付宏渊, 何忠明, 等.饱和-非饱和渗流条件下降雨对粗粒土路堤边坡稳定性的影响[J].中南大学学报(自然科学版), 2014, 45(10): 3614-3620. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zngydxxb201410039 ZENG Ling, FU Hongyuan, HE Zhongming, et al. Impact of rainfall on stability of granular soil embankment slope considering saturated-unsaturated seepage[J]. Journal of Central South University (Science and Technology), 2014, 45(10): 3614-3620. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zngydxxb201410039 [3] 张卢明, 郑明新, 何敏.滑坡防治前后滑带土基质吸力特征研究[J].岩土力学, 2010, 31(10): 3305-3312. doi: 10.3969/j.issn.1000-7598.2010.10.044 ZHANG Luming, ZHENG Mingxin, HE Min. Study of characteristics of matric suction in landslide slip soils before and after landslide control[J]. Rock and Soil Mechanics, 2010, 31(10): 3305-3312. (in Chinese) doi: 10.3969/j.issn.1000-7598.2010.10.044 [4] 何忠明, 邓喜, 唐昊龙, 等.降雨工况下粗粒土高路堤边坡暂态饱和区时空演变规律模型试验[J].中国公路学报, 2018, 31(2): 261-269. doi: 10.3969/j.issn.1001-7372.2018.02.028 HE Zhongming, DENG Xi, TANG Haolong, et al. Experiment on spatial and temporal evolution of transient saturated zone of coarse soil high embankment slope under rainfall condition[J]. China Journal of Highway and Transport, 2018, 31(2): 261-269. (in Chinese) doi: 10.3969/j.issn.1001-7372.2018.02.028 [5] 丁勇.人工降雨模拟作用下的黄土高边坡稳定性研究[D].西安: 西北大学, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10697-1011087661.htm DING Yong. Study on the stability of high loess slope under artificial rainfall simulation[D]. Xi'an: Northwest University, 2011. (in Chinese)) http://cdmd.cnki.com.cn/Article/CDMD-10697-1011087661.htm [6] OKURA Y, KITAHARA H, OCHIAI H, et al. Landslide fluidization process by flume experiments[J]. Engineering Geology, 2002, 66(1-2): 65-78. doi: 10.1016/S0013-7952(02)00032-7 [7] MORIWAKI H, INOKUCHI T, HATTANJI T, et al. Failure processes in a full-scale landslide experiment using a rainfall simulator[J]. Landslides, 2004, 1(4): 277-288. doi: 10.1007/s10346-004-0034-0 [8] 赵偲聪.土质边坡降雨离心模型试验研究[D].成都: 西南交通大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10613-1014252050.htm ZHAO Sicong. Centrifuge model tests on the engineering soil slope under rainfall condition[D]. Chengdu: Southwest Jiaotong University, 2014. (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10613-1014252050.htm [9] 姚裕春, 姚令侃, 袁碧玉.降雨条件下边坡破坏机理离心模型研究[J].中国铁道科学, 2004, 25(4): 64-68. doi: 10.3321/j.issn:1001-4632.2004.04.012 YAO Yuchun, YAO Lingkan, YUAN Biyu. Analysis of a centrifugal model of slope damage mechanism during rainfall[J]. China Railway Science, 2004, 25(4): 64-68. (in Chinese) doi: 10.3321/j.issn:1001-4632.2004.04.012 [10] HLAVÁ ČIKOVÁ H, DANKO M, HOLKO L, et al. The soil water regime of stony soils in a mountain catchment[C]//European Geosciences Union, General Assembly 2016. Vienna: EGU, 2016. [11] 任敏.含砾石紫色土坡面砾石分异特点及入渗特性研究[D].武汉: 华中农业大学, 2011. REN Min. Study on spatial distributions of rock fragments in purple soils on hillslopes and its water infiltration properties[D]. Wuhan: Huazhong Agricultural University, 2011. (in Chinese) [12] 朱元骏, 邵明安.含砾石土壤降雨入渗过程模拟[J].水科学进展, 2010, 21(6): 779-787. http://d.old.wanfangdata.com.cn/Periodical/skxjz201006007 ZHU Yuanjun, SHAO Ming'an. Simulation of rainfall infiltration in stony soil[J]. Advances in Water Science, 2010, 21(6): 779-787. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/skxjz201006007 [13] 吴冰, 邵明安, 毛天旭, 等.模拟降雨下坡度对含砾石土壤径流和产沙过程的影响[J].水土保持研究, 2010, 17(5): 54-58. http://d.old.wanfangdata.com.cn/Periodical/stbcyj201005012 WU Bing, SHAO Ming'an, MAO Tianxu, et al. Effects of slope gradient on runoff and sediment process in stony soil by stimulated rainfall[J]. Research of Soil and Water Conservation, 2010, 17(5): 54-58. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/stbcyj201005012 [14] 胡明鉴, 汪稔, 孟庆山, 等.降雨作用下砾石土斜坡坡面形态及临界特性[J].岩土力学, 2006, 27(9): 1549-1553. doi: 10.3969/j.issn.1000-7598.2006.09.024 HU Mingjian, WANG Ren, MENG Qingshan, et al. Gravelly soil slope surface shape and criticality under rainfall conditions[J]. Rock and Soil Mechanics, 2006, 27(9): 1549-1553. (in Chinese) doi: 10.3969/j.issn.1000-7598.2006.09.024 [15] 胡明鉴, 汪稔, 张平仓.蒋家沟流域松散砾石土斜坡滑坡频发原因与试验模拟[J].岩石力学与工程学报, 2002, 21(12): 1831-1834. doi: 10.3321/j.issn:1000-6915.2002.12.017 HU Mingjian, WANG Ren, ZHANG Pingcang. Causes and experimental simulation of frequent landslides on loose gravel soil slopes in Jiangjiagou watershed[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(12): 1831-1834. (in Chinese) doi: 10.3321/j.issn:1000-6915.2002.12.017 [16] 颜宇森, 雷海英.川东淀粉厂含碎石粉质粘土滑坡稳定性研究[J].水文地质工程地质, 2008, 35(3): 19-22, 27. doi: 10.3969/j.issn.1000-3665.2008.03.005 YAN Yusen, LEI Haiying. Study on the stability of the Chuandong starch factory landslide of the pebbly silty clay in east Sichuan Province[J]. Hydrogeology & Engineering Geology, 2008, 35(3): 19-22, 27. (in Chinese) doi: 10.3969/j.issn.1000-3665.2008.03.005 [17] 贾官伟, 詹良通, 陈云敏.水位骤降对边坡稳定性影响的模型试验研究[J].岩石力学与工程学报, 2009, 28(9): 1798-1803. doi: 10.3321/j.issn:1000-6915.2009.09.009 JIA Guanwei, ZHAN Liangtong, CHEN Yunmin. Model test study of slope instability induced by rapid drawdown of water level[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(9): 1798-1803. (in Chinese) doi: 10.3321/j.issn:1000-6915.2009.09.009 [18] 杨春宝, 朱斌, 孔令刚, 等.水位变化诱发粉土边坡失稳离心模型试验[J].岩土工程学报, 2013, 35(7): 1261-1271. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytgcxb201307010 YANG Chunbao, ZHU Bin, KONG Linggang, et al. Centrifugal model tests on failure of silty slopes induced by change of water level[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(7): 1261-1271. (in Chinese)) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytgcxb201307010 [19] 王涵.降雨条件下含砾量对土质边坡稳定性影响的试验研究[D].成都: 四川大学, 2018. WANG Han. Experimental study on the influence of different content of gravel on the stability of soil slopes under rainfall condition. Chengdu: Sichuan University, 2018. (in Chinese) -