Numerical analysis of a liquefiable slope ground and its centrifuge model test verification
-
摘要: 地震液化数值分析方法的可靠性验证研究是开展实际工程液化安全评价的前提条件。采用基于u-p形式的Biot动力固结方程的非线性有限元程序GEODYNA,对液化试验和分析项目(LEAP)中的饱和斜坡地基离心机模型试验进行了动力弹塑性有效应力数值分析,其中土体采用改进的广义塑性模型。结果表明:数值模拟的加速度反应谱和加速度时程与试验数据基本吻合;数值模拟再现了试验中孔隙水压力的累积、发展和消散规律,并再现了循环剪切作用下土体应力路径的发展规律和土体的剪胀现象;数值模拟合理地反映了残余变形的累积发展过程,并且数值模拟得到的地基变形分布规律与试验规律相符,变形量值也基本在试验的包线内。研究成果验证了该地震液化分析方法的可靠性,可以为工程液化安全评价提供有效的数值分析方法。Abstract: It is necessary to verify the reliability and rationality of a liquefaction numerical analysis method before its application to engineering safety assessment. In this study, the nonlinear finite element procedure GEODYNA based on u-p form Biot dynamic consolidation equations and the generalized plastic model of liquefiable soil modified by Dalian University of Technology are used to conduct a dynamic effective stress analysis of the centrifuge model test in the liquefaction experiment and analysis project (LEAP). The results show that the acceleration response spectrum and the acceleration time histories computed by the numerical method are basically consistent with the experimental data. The accumulation, development and dissipation principle of the excess pore pressure in the centrifuge model test are well reproduced by the numerical simulation. The development of soil stress paths and the soil dilatancy effect under cyclic shear loading are generally captured in the simulation. The accumulation and development process of residual deformations is reasonably reflected by the numerical simulation and the deformation distributions of the slope ground obtained by the numerical simulation are in good agreement with the test data. The reliability of the liquefaction numerical analysis method employed is verified, which ensures that it shall become an effective numerical method for engineering liquefaction safety assessment.
-
Key words:
- liquefaction /
- numerical analysis /
- pore pressure /
- centrifuge model test
-
表 1 砂土广义塑性模型参数
Table 1. Generalized plastic model parameters for the slope ground soil
G0 K0 Mg Mv αf αg HL0 HU0 ms mv ml mu γd γDM γu β0 β1 600 550 1.50 1.20 0.45 0.45 750 1 600 0.5 0.5 0.5 0.5 0 1.0 5.0 20 0.02 -
[1] 刘华北, 宋二祥.可液化土中地铁结构的地震响应[J].岩土力学, 2005, 26(3): 381-386, 391. doi: 10.3969/j.issn.1000-7598.2005.03.009 LIU Huabei, SONG Erxiang. Earthquake induced liquefaction response of subway structure in liquefiable soil[J]. Rock and Soil Mechanics, 2005, 26(3): 381-386, 391. (in Chinese) doi: 10.3969/j.issn.1000-7598.2005.03.009 [2] 王刚, 张建民, 魏星.可液化土层中地下车站的地震反应分析[J].岩土工程学报, 2011, 33(10): 1623-1627. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytgcxb201110022 WANG Gang, ZHANG Jianmin, WEI Xing. Seismic response analysis of a subway station in liquefiable soil[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(10): 1623-1627. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytgcxb201110022 [3] 邹德高, 孔宪京.液化土中管线抗上浮排水措施数值分析[J].大连理工大学学报, 2010, 50(3): 379-385. http://d.old.wanfangdata.com.cn/Periodical/dllgdxxb201003012 ZOU Degao, KONG Xianjing. Numerical analysis of mitigation methods against pipeline up-lifting in liquefiable soil[J]. Journal of Dalian University of Technology, 2010, 50(3): 379-385. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/dllgdxxb201003012 [4] 孔宪京, 邹德高.基于液化后变形分析方法的地下管线上浮反应研究[J].岩土工程学报, 2007, 29(8): 1199-1204. doi: 10.3321/j.issn:1000-4548.2007.08.012 KONG Xianjing, ZOU Degao. Study on uplift behavior of pipelines based on post-liquefaction deformation method[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(8): 1199-1204. (in Chinese) doi: 10.3321/j.issn:1000-4548.2007.08.012 [5] 黄雨, 八嵨厚, 沢田和秀, 等.堤防地基地震液化的数值模拟[J].工程力学, 2007, 24(12): 82-87. doi: 10.3969/j.issn.1000-4750.2007.12.015 HUANG Yu, YASHIMA A, SAWADA K, et al. Numerical modeling of earthquake liquefaction in earth embankment foundations[J]. Engineering Mechanics, 2007, 24(12): 82-87. (in Chinese) doi: 10.3969/j.issn.1000-4750.2007.12.015 [6] 刘汉龙, 井合进, 一井康二.大型沉箱式码头岸壁地震反应分析[J].岩土工程学报, 1998, 20(2): 26-30. doi: 10.3321/j.issn:1000-4548.1998.02.009 LIU Hanlong, IAI S, ICHII K. Seismic response analysis of large-size caisson quay wall[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(2): 26-30. (in Chinese) doi: 10.3321/j.issn:1000-4548.1998.02.009 [7] 王刚, 张建民.砂土液化变形的数值模拟[J].岩土工程学报, 2007, 29(3): 403-409. doi: 10.3321/j.issn:1000-4548.2007.03.015 WANG Gang, ZHANG Jianmin. Numerical modeling of liquefaction-induced deformation in sand[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(3): 403-409. (in Chinese)) doi: 10.3321/j.issn:1000-4548.2007.03.015 [8] POPESCU R, PREVOST J H. Centrifuge validation of a numerical model for dynamic soil liquefaction[J]. Soil Dynamics and Earthquake Engineering, 1993, 12(2): 73-90. doi: 10.1016/0267-7261(93)90047-U [9] BYRNE P M, PARK S S, BEATY M, et al. Numerical modeling of liquefaction and comparison with centrifuge tests[J]. Canadian Geotechnical Journal, 2004, 41(2): 193-211. doi: 10.1139/t03-088 [10] KUTTER B L, CAREY T J, HASHIMOTO T, et al. LEAP-GWU-2015 experiment specifications, results, and comparisons[J]. Soil Dynamics and Earthquake Engineering, 2018, 113: 616-628. doi: 10.1016/j.soildyn.2017.05.018 [11] MANZARI M T, EL GHORAIBY M, KUTTER B L, et al. Liquefaction Experiment and Analysis Projects (LEAP): summary of observations from the planning phase[J]. Soil Dynamics and Earthquake Engineering, 2018, 113: 714-743. doi: 10.1016/j.soildyn.2017.05.015 [12] KOKKALI P, ABDOUN T, ZEGHAL M. Physical modeling of soil liquefaction: overview of LEAP production test 1 at Rensselaer Polytechnic Institute[J]. Soil Dynamics and Earthquake Engineering, 2018, 113: 629-649. doi: 10.1016/j.soildyn.2017.01.036 [13] 孔宪京, 邹德高, 徐斌, 等.紫坪铺面板堆石坝三维有限元弹塑性分析[J].水力发电学报, 2013, 32(2): 213-222. http://d.old.wanfangdata.com.cn/Conference/8133457 KONG Xianjing, ZOU Degao, XU Bin, et al. Three-dimensional finite element elasto-plastic analysis of Zipingpu concrete faced rock-fill dam[J]. Journal of Hydroelectric Engineering, 2013, 32(2): 213-222. (in Chinese) http://d.old.wanfangdata.com.cn/Conference/8133457 [14] 邹德高, 杨依民, 刘京茂, 等.广义塑性模型在海洋砂土中的适用性研究[J].水电能源科学, 2013, 31(11): 159-162. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sdnykx201311043 ZOU Degao, YANG Yimin, LIU Jingmao, et al. Study on adaptability of generalized plastic model in ocean sand[J]. Water Resources and Power, 2013, 31(11): 159-162. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sdnykx201311043 [15] ZOU D G, XU B, KONG X J, et al. Numerical simulation of the seismic response of the Zipingpu concrete face rockfill dam during the Wenchuan earthquake based on a generalized plasticity model[J]. Computers and Geotechnics, 2013, 49: 111-122. doi: 10.1016/j.compgeo.2012.10.010 [16] 邹德高, 徐斌, 孔宪京, 等.基于广义塑性模型的高面板堆石坝静、动力分析[J].水力发电学报, 2011, 30(6): 109-116. http://d.old.wanfangdata.com.cn/Periodical/slfdxb201106021 ZOU Degao, XU Bin, KONG Xianjing, et al. Static and dynamic analysis of high concrete-faced rockfill dam based on generalized plastic model[J]. Journal of Hydroelectric Engineering, 2011, 30(6): 109-116. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/slfdxb201106021 [17] 邹德高.地震时浅埋地下管线上浮机理及减灾对策研究[D].大连: 大连理工大学, 2008. http://cdmd.cnki.com.cn/Article/CDMD-10141-2009040891.htm ZOU Degao. Study on uplifting mechanism and mitigation measurement of the pipelines buried at shallow depth during the earthquake[D]. Dalian: Dalian University of Technology, 2008. (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10141-2009040891.htm [18] ZOU D G, TENG X W, CHEN K, et al. An extended polygon scaled boundary finite element method for the nonlinear dynamic analysis of saturated soil[J]. Engineering Analysis with Boundary Elements, 2018, 91: 150-161. doi: 10.1016/j.enganabound.2018.03.019 [19] ZOU D G, TENG X W, CHEN K, et al. A polyhedral scaled boundary finite element method for three-dimensional dynamic analysis of saturated porous media[J]. Engineering Analysis with Boundary Elements, 2019, 101: 343-359. doi: 10.1016/j.enganabound.2019.01.012 [20] ZIENKIEWICZ O C, CHAN A H C, PASTOR M, et al. Computational geomechanics with special reference to earthquake engineering[M]. Chichester: Wiley, 1999. [21] 刘晶波, 廖振鹏.离散网格中的弹性波动(Ⅱ)——几种有限元离散模型的对比分析[J].地震工程与工程振动, 1989, 9(2): 1-11. http://www.cnki.com.cn/Article/CJFDTotal-DGGC198902000.htm LIU Jingbo, LIAO Zhenpeng. Elastic wave motion in discrete grids (Ⅱ)——Comparison of common finite element models[J]. Earthquake Engineering and Engineering Vibration, 1989, 9(2): 1-11. (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-DGGC198902000.htm [22] VASKO A. An investigation into the behavior of Ottawa sand through monotonic and cyclic shear tests[D]. Washington: The George Washington University, 2015. https://search.proquest.com/docview/1685959360 [23] GHOFRANI A, ARDUINO P. Prediction of LEAP centrifuge test results using a pressure-dependent bounding surface constitutive model[J]. Soil Dynamics and Earthquake Engineering, 2018, 113: 758-770. doi: 10.1016/j.soildyn.2016.12.001 [24] MADABHUSHI S S C, HAIGH S K, MADABHUSHI G S P. LEAP-GWU-2015: centrifuge and numerical modelling of slope liquefaction at the University of Cambridge[J]. Soil Dynamics and Earthquake Engineering, 2018, 113: 671-681. doi: 10.1016/j.soildyn.2016.11.009 [25] ZIOTOPOULOU K. Seismic response of liquefiable sloping ground: class A and C numerical predictions of centrifuge model responses[J]. Soil Dynamics and Earthquake Engineering, 2018, 113: 744-757. doi: 10.1016/j.soildyn.2017.01.038 -